首页|社区高血压前期的影响因素分析及发病风险预测模型建立

社区高血压前期的影响因素分析及发病风险预测模型建立

扫码查看
目的 探讨社区高血压前期的危险因素,旨在建立并验证一种辅助基层全科医生预测高血压前期发病风险的可视化评价工具.方法 2021年9月-2022年9月选取乌鲁木齐市某街道参加全民健康体检的居民为研究对象,进行大规模的问卷调查、体格检查和实验室检查,收集调查对象的一般资料和生化资料.根据调查对象血压情况,排除已检出高血压患者后(n=3 324),将余下研究对象(n=9 879)分为正常血压组和高血压前期组,并对其基线资料进行单因素分析;通过严格的数据过滤和预处理,将排除已检出高血压患者的研究对象按照2:1比例随机分成训练组(n=6 586)和验证组(n=3 293);再将训练组研究对象按照血压水平分为正常血压组和高血压前期组,以高血压前期作为结局变量,利用多因素logistic回归分析探讨并建立列线图(Nomogram)预测模型,并由验证组数据验证构建的预测模型.训练组和验证组分别采用受试者工作特征曲线下面积、校准曲线和决策曲线分析对预测模型的鉴别能力、准确性和实用性进行评估.结果 本研究共回收有效问卷13 203份,其中血压正常5 599人,高血压前期4 280人,高血压3 324人.高血压前期检出率为32.42%(4 280/13 203),高血压检出率为25.18%(3 324/13 203).多因素logistic回归分析结果显示,空腹血糖(OR=1.29,95%CI:1.07~1.54)、总胆固醇(OR=2.68,95%CI:2.06~3.48)、低密度脂蛋白(OR=2.75,95%CI:2.15~3.52)、高尿酸血症(OR=1.56,95%CI:1.29~1.88)、中心型肥胖(OR=1.66,95%CI:1.21~2.29)、食盐摄入量(OR=1.30,95%CI:1.27~1.33)、吸烟(OR=1.88,95%CI:1.56~2.26)、高密度脂蛋白(OR=0.33,95%CI:0.21~0.54)、每日千步当量(OR=0.59,95%CI:0.57~0.61)和BMI是高血压前期发生的影响因素(P<0.05),其中BMI≥24.0 kg/m2人群发生高血压前期的风险是正常体质量人群的1.52倍(95%CI:1.25~1.84),是低体质量人群的8.46倍(95%CI:6.67~10.72).基于上述多因素logistic回归分析筛选出的影响因素建立高血压前期列线图预测模型,训练组列线图预测模型预测高血压前期发生的曲线下面积为0.895(95%CI:0.888~0.903);验证组列线图预测模型预测高血压前期发生的曲线下面积为0.892(95%CI:0.881~0.904).Hosmer-Lemeshow拟合优度检验显示出较好的拟合度(P>0.05).决策性曲线显示当人群的阈值概率为0~0.9,使用列线图预测模型预测高血压前期风险的净收益更高.结论 本研究成功建立并验证一种高精度的列线图预测模型(预测变量包括空腹血糖、总胆固醇、低密度脂蛋白、高密度脂蛋白、高尿酸血症、中心型肥胖、BMI、食盐摄入量、吸烟、每日千步当量),有助于提高基层全科医生识别和筛选高血压前期高危患者的能力.
Factors influencing community prehypertension and establishment of an incidence risk prediction model
Objective To explore the risk factors of community prehypertension,and to develop and validate a visualization evaluation tool which can assist grassroots general practitioners in predicting the risk of prehypertension.Methods From September 2021 to September 2022,residents of a street in Urumqi City who participated in the national health examination were selected as the research subjects.A large-scale questionnaire survey,health checkups and laboratory tests were conducted to collect the surveyed subjects'general and biochemical data.According to the subjects'blood pressure status,3,324 patients with hypertension were excluded,the remaining 9,879 subjects were divided into the normal blood pressure group and the prehypertension group,and their baseline data were analyzed by single factor analysis.After strict data filtering and preprocessing,the above-mentioned 9,879 subjects were randomly divided into the training group(n=6,586)and the verification group(n=3,293)in a ratio of 2:1,and then the subjects in the training group were subgrouped into the normal blood pressure group and the prehypertension group according to their blood pressure levels,with prehypertension as the outcome variable.Multivariate logistic regression analysis was performed to explore and establish a nomogram prediction model,and the model was verified by the data of the verification group.Based on the training group and the verification group,the area under the curve(AUC)for the receiver operator characteristic(ROC)analysis,calibration curve-based analysis and decision curve analysis(DCA)were employed to evaluate the identification ability,accuracy and applicability of the nomogram prediction model.Results A total of 13,203 valid questionnaires were retrieved in this study,including 5,599 subjects withi normal blood pressure,4,280 subjects with prehypertension and 3,324 subjects with hypertension.The detection rates of prehypertension and hypertension were 32.42%(4,280/13,203)and 25.18%(3,324/13,203)respectively.The results of multivariate logistic regression analysis displayed that fasting blood glucose(OR=1.29,95%C/:1.07-1.54),total cholesterol(OR=2.68,95%CI:2.06-3.48),low density lipoprotein(OR=2.75,95%CI:2.15-3.52),hyperuricemia(OR=1.56,95%CI:1.29-1.88),central obesity(OR=1.66,95%CI:1.21-2.29),salt intake(OR=1.30,95%CI:1.27-1.33),smoking(OR=1.88,95%CI:1.56-2.26),high density lipoprotein(OR=0.33,95%CI:0.21-0.54),thousand steps equivalent per day(OR=0.59,95%CI:0.57-0.61)and body mass index(BMI)were independent factors influencing the occurrence of prehypertension.The risk of developing prehypertension in subjects with BMI 24.0 was 1.52 times that of subjects with normal BMI(95%CI:1.25-1.84)and 8.46 times that of subjects with low BMI(95%CI:6.67-10.72).The nomogram prediction model for prehypertension was established based on the above-mentioned influencing factors selected by multivariate logistic regression analysis.The AUC of the nomogram prediction model for prehypertension in the training group was 0.895(95%CI:0.888-0.903),and that in the validation group was 0.892(95%CI:0.881-0.904).The nomogram prediction model was found with a high goodness of fit by the Hosmer-Lemeshow test(P>0.05).DCA showed that when the subjects'threshold probability was 0-0.9,using the nomogram prediction model resulted in higher net benefit of predicting the risk of prehypertension.Conclusion We successfully established and verified a nomogram prediction model(with the predictive variables like fasting blood glucose,total cholesterol,low density lipoprotein,high density lipoprotein,hyperuricemia,central obesity,BMI,salt intake,smoking and thousand steps equivalent per day)with a high accuracy in this study,which is conducive to improving grassroots general practitioners'abilities to identify and screen high-risk patients with prehypertension.

prehypertensionrisk factorrisk prediction model

刘芳、祖姆热提·阿布都克依木、毛英、王燕侠、李霞

展开 >

新疆医科大学第五附属医院,新疆 乌鲁木齐 830011

高血压前期 危险因素 风险预测模型

新疆维吾尔族自治区"青年科技人才-乡村振兴"项目乌鲁木齐市卫生健康委科技计划项目

WJWY-XCZ X202214202257

2024

实用预防医学
中华预防医学会 湖南省预防医学会

实用预防医学

CSTPCD
影响因子:1.391
ISSN:1006-3110
年,卷(期):2024.31(7)
  • 23