首页|基于长短期记忆神经网络模型对湖南省流感样病例的预测研究

基于长短期记忆神经网络模型对湖南省流感样病例的预测研究

扫码查看
目的 基于TensorFlow深度学习框架的长短期记忆神经网络(long-short term memory,LSTM)模型构建湖南省流感样病例(influenza-like illness,ILI)就诊百分比发病趋势预测模型,为提高湖南省的流感防控水平提供科学依据.方法 利用中国流感监测信息系统中湖南省2010年第1周-2022年第52周的流感监测数据,依次使用2010-2019年、2010-2020年、2010-2021年及2010-2022年数据集构建LSTM模型并预测ILI%的流行趋势.结果 四次建模的平均绝对误差(mean absolute error,MAE)分别为 0.067、0.060、0.045 和 0.057;均方根误差(root mean square error,RMSE)分别为0.104、0.104、0.057 和 0.089;平均绝对百分误差(mean absolute percentage error,MAPE)分别为 19.191%、24.222%、13.646%和18.317%.结论 LSTM模型的拟合效果和预测效果较好,可为湖南省的流感预测及防控工作提供参考依据.
Prediction of influenza-like illness cases in Hunan Province based on the long-short term memory model
Objective To establish a model for predicting the incidence trend in the proportion of outpatient visits for influenza-like illness(ILI)in Hunan Province based on a long-short term memory(LSTM)model on the strength of the TensorFlow deep learning framework,and to provide a scientific basis for improving the level of influenza prevention and control in Hunan Province.Methods We collected the data regarding influenza surveillance in Hunan Province from the 1st week of 2010 to the 52nd week of 2022 from the Chinese Influenza Surveillance Information System.The 2010-2019,2010-2020,2010-2021 and 2010-2022 datasets were used sequentially to construct an LSTM model,and the epidemic trend in ILI%was predicted.Results The mean absolute error(MAE)of the four modeling predictions was 0.067,0.060,0.045 and 0.057 respectively.The root mean square error(RMSE)was 0.104,0.104,0.057 and 0.089 respectively.The mean absolute percentage error(MAPE)was 19.191%,24.222%,13.646%and 18.317%respectively.Conclusion The established LSTM model has good fitting results and prediction effect,which can provide a reference basis for influenza prediction,prevention and control in Hunan Province.

influenza-like illnesslong-short term memory modelprediction

张梦瑶、赵善露、孙倩莱、王小磊、徐慧兰

展开 >

中南大学湘雅公共卫生学院,湖南 长沙 410005

湖南省疾病预防控制中心/中国医学科学院湖南新发突发传染病防治工作站,湖南 长沙 410153

流感样病例 长短期记忆神经网络模型 预测

2024

实用预防医学
中华预防医学会 湖南省预防医学会

实用预防医学

CSTPCD
影响因子:1.391
ISSN:1006-3110
年,卷(期):2024.31(12)