首页|超声影像组学模型预测肝细胞癌患者GPC3阳性表达的价值

超声影像组学模型预测肝细胞癌患者GPC3阳性表达的价值

扫码查看
目的 筛选肝细胞癌(HCC)患者GPC3阳性表达的超声影像组学特征构建预测模型,探讨其预测价值。方法 2019年5月-2023年2月河南省人民医院、郑州大学第一附属医院行手术治疗的HCC患者290例,术后免疫组织化学检查示GPC3阳性219例,阴性79例。按照8∶2的比例将290例患者随机分为训练集232例和测试集58例。比较训练集与测试集患者性别、年龄、Child-Pugh肝功能分级、肿瘤位置、肿瘤最大径、甲胎蛋白、谷丙转氨酶、谷草转氨酶、碱性磷酸酶、谷氨酰转肽酶、白蛋白、总胆红素、结合胆红素、血肌酐、凝血酶原时间、纤维蛋白原、国际标准化比值及肝硬化、脾大、腹腔积液、乙型肝炎表面抗原/丙型肝炎病毒抗体阳性、GPC3阳性比率。患者术前均行肝脏超声检查,勾画肝脏病灶区域,将声像图归一化、标准化处理后应用Pyradiomics软件提取1 046个超声影像组学特征,应用lasso回归筛选出与GPC3阳性表达高度相关的10个影像组学特征。采用机器学习随机森林算法建立HCC患者GPC3阳性表达的预测模型。绘制ROC曲线,评估预测模型对训练集和测试集患者GPC3阳性表达的预测效能。结果 训练集与测试集性别比例、年龄、Child-Pugh肝功能分级、肿瘤位置、肿瘤最大径、甲胎蛋白、谷丙转氨酶、谷草转氨酶、碱性磷酸酶、谷氨酰转肽酶、白蛋白、总胆红素、结合胆红素、血肌酐、凝血酶原时间、纤维蛋白原、国际标准化比值及肝硬化、脾大、腹腔积液、乙型肝炎表面抗原/丙型肝炎病毒抗体阳性、GPC3阳性比率比较差异均无统计学意义(P>0。05)。预测模型在训练集预测GPC3阳性表达的AUC为0。820(95%CI:0。758~0。883,P<0。05),准确度、特异度、灵敏度分别为59。5%、84。2%、51。4%。预测模型在测试集预测GPC3阳性表达的AUC为0。700(95%CI:0。567~0。832,P<0。05),准确度、特异度、灵敏度分别为63。8%、85。7%、56。8%。结论 采用机器学习随机森林算法构建的超声影像组学模型对HCC患者GPC3阳性表达具有较好预测价值。
Value of ultrasound radiomic model to the prediction of the positive expression of glypican-3 in patients with hepatocellular carcinoma
Objective To screen the ultrasound radiomic features of patients with hepatocellular carcinoma(HCC),to construct a predictive model for the positive expression of glypican 3(GPC3),and to explore its predictive value.Methods A total of 290 HCC patients underwent surgical treatment in Henan Provincial People's Hospital and the First Affiliated Hospital of Zhengzhou University from May 2019 to February 2023,among whom the postoperative immunohistochemical examination showed positive GPC3 in 219 patients and negative GPC3 in 79.According to the ratio of 8∶2,290 patients were randomly divided into the training set(n=232)and the testing set(n=58).The gender,age,Child-Pugh liver function classification,maximal tumor location,tumor diameter,alpha-fetoprotein,alanine aminotransferase,aspartate aminotransferase,alkaline phosphatase,glutamyl transpeptidase,albumin,total bilirubin,conjugated bilirubin,serum creatinine,prothrombin time,fibrinogen,international normalized ratio,and proportions of liver cirrhosis,splenomegaly,ascites,positive hepatitis B surface antigen/hepatitis C virus antibody,and positive GPC3 were compared between two sets.All patients received ultrasound examination to outline the area of liver lesions.A total of 1 046 ultrasound radiomic features were extracted from the sonographic images after normalization and standardization.Lasso regression was used to screen out 10 radiomic features which were highly related with the positive expression of GPC3.Machine learning random forest algorithm was used to establish a model for predicting the positive expression of GPC3 in HCC patients.ROC curve was plotted to evaluate the predictive efficiency of the prediction model on the positive expression of GPC3 in two sets.Results There were no significant differences in the gender ratio,age,Child-Pugh liver function classification,tumor location,maximal tumor diameter,alpha-fetoprotein,alanine aminotransferase,aspartate aminotransferase,alkaline phosphatase,glutamyl transpeptidase,albumin,total bilirubin,conjugated bilirubin,serum creatinine,prothrombin time,fibrinogen,international normalized ratio,and proportions of liver cirrhosis,splenomegaly,ascites,positive hepatitis B surface antigen/hepatitis C virus antibody and positive GPC3 between two sets(P>0.05).The AUC of the prediction model in the training set for predicting positive GPC3 was 0.820(95%CI:0.758-0.883,P<0.05),and the accuracy,specificity and sensitivity were 59.5%,84.2%and 51.4%,respectively.The AUC of the prediction model in the testing set was 0.700(95%CI:0.567-0.832,P<0.05),and the accuracy,specificity and sensitivity were 63.8%,85.7%and 56.8%,respectively.Conclusion The ultrasound radiomic model constructed by machine learning random forest algorithm has a good predictive value for the positive expression of GPC3 in HCC patients.

hepatocellular carcinomapositive glypican-3ultrasound radiomic model

王思梦、段少博、齐清华、张林林、任闪闪、李亚红、张连仲

展开 >

河南大学人民医院河南省人民医院超声科,河南郑州 450003

河南省人民医院健康管理科,河南郑州 450003

郑州大学第一附属医院超声科,河南郑州 450052

肝细胞癌 GPC3阳性 超声影像组学模型

国家自然科学基金河南省重点研发计划项目河南省医学科技攻关计划联合共建项目

82371987221111310400LHGJ20210020

2024

中华实用诊断与治疗杂志
中华预防医学会 河南省人民医院

中华实用诊断与治疗杂志

CSTPCD
影响因子:1.276
ISSN:1674-3474
年,卷(期):2024.38(5)
  • 20