首页|临床-影像组学模型对肾输尿管结石患者行经皮肾镜取石术术后严重出血的预测价值

临床-影像组学模型对肾输尿管结石患者行经皮肾镜取石术术后严重出血的预测价值

扫码查看
目的 构建预测肾输尿管结石患者行经皮肾镜取石术(PCNL)术后严重出血的临床-影像组学模型,探讨其对PCNL术后严重出血的预测价值。方法 2021年4月-2022年8月南昌大学第二附属医院行PCNL术的肾输尿管结石患者130例,根据术后24 h内是否发生严重出血分为出血组39例和未出血组91例,比较2组结石位置、结石数量、结石直径等临床资料,采用多因素logistic回归分析肾输尿管结石患者行PCNL术后严重出血的影响因素并构建临床模型。130例患者均行CT检查,获取非对比增强CT影像图,勾画结石感兴趣区,经滤波、log化及重采样等预处理后提取特征,采用lasso回归筛选影像组学特征,采用多因素logistic回归分析肾输尿管结石患者行PCNL术后严重出血的影响因素并构建影像组学模型。根据临床影响因素与影像组学影响因素构建临床-影像组学模型,绘制ROC曲线,评估临床模型、临床-影像组学模型对肾输尿管结石患者行PCNL术后严重出血的预测效能,采用Delong检验、决策曲线、校准曲线比较2种模型的预测效果。结果 (1)出血组铸型结石比率(87。2%)、结石数量[4(3,5)个]、结石直径[2。7(2。3,3。0)cm]均大于未出血组[24。2%、3(1,4)个、1。7(1。3,2。3)cm](P<0。05),结石位于输尿管、肾及一期手术、单通道手术比率(10。3%、51。3%、79。5%、87。2%)均低于未出血组(20。9%、63。7%、98。9%、98。9%)(P<0。05)。(2)结石形状(OR=25。481,95%CI:5。408~120。054,P<0。001)、分期手术(OR=19。486,95%CI:1。210~313。687,P=0。036)是肾输尿管结石患者行PCNL术后严重出血的临床影响因素;临床模型logistic(P1)=-2。888+3。109×铸型结石+3。297×二期手术。(3)lasso回归分析筛选出与肾输尿管结石患者行PCNL术后严重出血最有相关性的7个特征,包括一阶指数中值、局部二值模式的一阶2D第90百分位值、LLH小波短行程低灰度强调、LLH小波邻域灰度差矩阵繁忙度、LHH小波灰度尺寸区域矩阵小面积强调、HLH小波一阶偏度、HHL小波长形成高灰度强调。LLH小波短行程低灰度强调(OR=24。970,95%CI:1。351~461。611,P=0。031)、HLH 小波一阶偏度(OR=10。671,95%CI:1。192~95。509,P=0。034)是肾输尿管结石患者行PCNL术后严重出血的影像组学影响因素;影像组学模型logistic(P2)=-2。058+2。086×LLH小波短行程低灰度强调+1。547×HLH小波一阶偏度。(4)临床-影像组学模型logistic(P3)=-5。383+3。695 × LLH小波短行程低灰度强调+2。812×HLH小波一阶偏度+3。613×铸型结石+3。180×二期手术。临床模型、临床-影像组学模型的最佳截断值为0。304、0。416时,预测肾输尿管结石患者行PCNL术后严重出血的 AUC 分别为 0。844(95%CI:0。770~0。918,P<0。001)、0。900(95%CI:0。839~0。961,P<0。001)。与临床模型相比,临床-影像组学模型有更好的临床净收益。临床-影像组学模型对肾输尿管结石患者行PCNL术后严重出血的鉴别能力优于临床模型,有良好的校准能力和拟合度。结论 肾输尿管结石患者行二期PCNL、存在铸型结石、LLH小波短行程低灰度强调和HLH小波一阶偏度数值增加时,PCNL术后出现严重出血的风险增大;根据临床特征和影像组学特征构建的临床-影像组学模型对肾输尿管结石患者行PCNL术后严重出血的预测价值较大。
Value of clinical-radiomic model to the prediction of severe bleeding after percutaneous nephrolithotomy for renal ureteral stones
Objective To construct a clinical-radiomic model for predicting severe bleeding after percutaneous nephrolithotomy(PCNL)in patients with renal ureteral stones,and to explore its predictive value.Methods Totally 130 patients underwent PCNL in the Second Affiliated Hospital of Nanchang University from April,2021 to August,2022,and were divided into bleeding group(n=39)and non-bleeding group(n=91)according to the presence or absence of severe bleeding 24 h postoperatively.The clinical data as the location,number and size of stone were compared between two groups.Multivariate logistic regression was employed to identify the influencing factors of severe bleeding after PCNL in patients with renal ureteral stones,and a clinical prediction model was constructed.All 130 patients underwent CT scans,and non-contrast enhanced CT images were processed to delineate the stone region of interest.Radiomic features were extracted following preprocessing steps such as filtering,log transformation and resampling,lasso regression was used for feature selection,and multivariate logistic regression analysis was performed to identify the radiomic influencing factors of severe bleeding after PCNL in patients with renal ureteral stones,and to construct a radiomic prediction model.A combined clinical-radiomic prediction model was constructed by integrating clinical and radiomic influencing factors,and ROC curves were plotted to evaluate the predictive performance of both models for severe bleeding after PCNL in patients with renal ureteral stones.The Delong test,decision curve and calibration curve were employed to compare the predictive efficacies of two models.Results(1)The cast stone percentage,and number and diameter of stones were higher in bleeding group[87.2%,4(3,5),2.7(2.3,3.0)cm]than those in non-bleeding group[24.2%,3(1,4),1.7(1.3,2.3)cm](P<0.05),and the percentages of stones locating in the ureter and kidney,primary surgery and single-channel surgery were lower in bleeding group(10.3%,51.3%,79.5%,87.2%)than those in non-bleeding group(20.9%,63.7%,98.9%,98.9%)(P<0.05).(2)The stone shape(OR=25.481,95%CI:5.408-120.054,P<0.001)and surgical stage(OR=19.486,95%CI:1.210-313.687,P=0.036)were the clinical influencing factors of severe bleeding after PCNL in patients with renal ureteral stones.The clinical model logistic(Pi)=-2.888+3.109 X cast stone+3.297 X second-stage surgery.(3)Lasso regression analysis revealed seven radiomic features which were mostly highly correlated with severe bleeding after PCNL in patients with renal ureteral stones as exponential_firstorder_Median,lbp-2D_firstorder_90Percentile,wavelet-LLH_glrlm_ShortRunLowGrayLevelEmphasis,wavelet-LLH_ngtdm_Busyness,wavelet-LHH_glszm_SmallAreaEmphasis,wavelet-HLH_firstorder_Skewness and wavelet-HHL_glrlm_LongRunHighGrayLevelEmphasis.Wavelet-LLH_glrlm_ShortRunLowGrayLevelEmphasis(OR=24.970,95%CI:1.351-461.611,P=0.031)and wavelet-HLH_firstorder_Skewness(OR=10.671,95%CI:1.192-95.509,P=0.034)were the radiomic influencing factors of severe bleeding after PCNL in patients with renal ureteral stones.The radiomic model logistic(P2)=-2.058+2.086 × wavelet-LLH_glrlm_ShortRunLowGrayLevelEmphasis+1.547 × wavelet-HLH_firstorder_Skewness.(4)The clinical-radiomic model logistic(P3)=-5.383+3.695 × wavelet-LLH_glrlm_ShortRunLowGrayLevelEmphasis+2.812 × wavelet-HLH_firstorder_Skewness+3.613×cast stone+3.180× second-stage surgery.When the optimal cut-off values of the clinical-radiomic model and the clinical model were 0.416 and 0.304,the AUCs for predicting severe bleeding after PCNL in patients with renal ureteral stones were 0.900(95%CI:0.839-0.961,P<0.001)and 0.844(95%CI:0.770-0.918,P<0.001),respectively.Compared with the clinical prediction model,the clinical-radiomic prediction model had better clinical net benefits.The clinical-radiomic prediction model was superior to the clinical model in predicting severe bleeding after PCNL in patients with renal ureteral stones.The clinical-radiomic prediction model had good fitting and calibration capabilities.Conclusion The second-stage PCNL,cast stone,wavelet-LLH_glrlm_ShortRunLowGrayLevelEmphasis,and wavelet-HLH_firstorder_Skewness increase the risk of severe bleeding after PCNL in patients with renal ureteral stones,and the clinical-radiomic prediction model based on clinical characteristics and radiomic features has a high predictive value.

urinary tract stonespercutaneous nephrolithotomysevere bleedingclinical modelradiomic modelclinical-radiomic model

邹新昌、金梦妮、黄建彪、曾涛

展开 >

南昌大学第二附属医院泌尿外科,江西南昌 330008

南昌大学第二附属医院影像科,江西南昌 330008

泌尿系结石 经皮肾镜取石术 严重出血 临床模型 影像组学模型 临床-影像组学模型

国家自然科学基金

82260598

2024

中华实用诊断与治疗杂志
中华预防医学会 河南省人民医院

中华实用诊断与治疗杂志

CSTPCD
影响因子:1.276
ISSN:1674-3474
年,卷(期):2024.38(6)