首页|深度学习MMV-Net模型对乳腺X线良性和恶性肿块的分类效能

深度学习MMV-Net模型对乳腺X线良性和恶性肿块的分类效能

扫码查看
目的 构建基于乳腺X线多视图的深度学习框架(Network based on mammography multiple views,MMV-Net),评价模型对乳腺良性和恶性肿块的分类效能.方法 回顾性分析 2018-2020 年哈尔滨医科大学附属肿瘤医院 1 585 例乳腺X线图像数据集,其中良性 806 例,恶性779 例,按8∶2 分为训练集(n=1268)和测试集(n=317),并按照5 折交叉验证对训练集进行分层,采用集成的DDSM数据集和INBreast数据集作为外部测试集(n=1 645)来评估模型性能.输入层每个病例包含 4 个视图,通过删除ResNet22 网络模型的最后两层网络结构并加入平均池化层作为特征提取层,以及分别加入全连接层和softmax激活函数作为决策层构建MMV-Net模型,使用贝叶斯超参数优化.比较MMV-Net、MFA-Net和集成Inception V4 模型在AUC值、准确率、精确率、召回率和F1 分数上的表现.结果 MMV-Net模型在测试集上区分良性和恶性肿块的AUC值为0.913,MFA-Net的AUC为0.882,Inception V4 的AUC为0.865;MMV-Net模型的准确率和精确率等评估指标也高于其他两种模型.结论 基于乳腺X线多视图的深度学习MMV-Net模型有助于乳腺良性和恶性肿块的分类.
The classification performance of MMV-Net model for benign and malignant masses on X-ray mammography using deep learning
Objective The MMV-Net,a deep learning framework based on mammogram multiple views,was constructed to evaluate the classification performance of the model for benign and malignant masses.Methods A retrospective analysis was conduc-ted on a dataset of 1 585 breast X-ray images from Harbin Medical University Cancer Hospital from 2018 to 2020,including 806 be-nign cases and 779 malignant cases.The dataset was divided into the training set(n=1268)and the test set(n=317)according to an 8∶2 ratios,and the training set was stratified according to the 5-fold cross validation.The integrated DDSM dataset and INBreast dataset were used as external test sets(n=1645)to evaluate the model performance.Each case in the input layer contained 4 views.The MMV-Net model was constructed by removing the last two layers of the ResNet22 network structure and adding an average poo-ling layer as the feature extraction layer,as well as fully connection layer and softmax activation function as the decision layers.Bayes-ian hyperparameter optimization was used.The performance of MMV-Net,MFA Net,and ensemble inception V4 models in AUC val-ues,accuracy,precision,recall and F1 scores were compared.Results The AUC values of MMV-Net model for distinguishing benign and malignant masses on the test set were 0.913,0.882 for MFA-Net,and 0.865 for inception V4.The accuracy and precision evalu-ation metrics of the MMV-Net model were also higher than the other two models.Conclusion The deep learning MMV-Net model based on multiple views of mammogram is helpful for the classification of benign and malignant breast masses.

Deep learningMMV-Net modelMammographyTumorClassification

李家豪、柏家和、兰婕、李海霞、张岩、孙江宏

展开 >

哈尔滨医科大学附属肿瘤医院(哈尔滨 150081)

哈尔滨医科大学附属肿瘤医院超声科

哈尔滨工业大学生命科学与技术学院

哈尔滨医科大学附属肿瘤医院影像中心

展开 >

深度学习 MMV-Net模型 乳腺X线摄影 肿块 分类

大学生创新训练国家级一般项目资助大学生创新训练国家级一般项目资助

202310226066国家级202310226023校级

2024

实用肿瘤学杂志
黑龙江省,辽宁省,吉林省肿瘤防治办公室

实用肿瘤学杂志

CSTPCD
影响因子:0.528
ISSN:1002-3070
年,卷(期):2024.38(3)