首页|利用联合模型动态预测IgA肾病患者进入终末期肾病的概率

利用联合模型动态预测IgA肾病患者进入终末期肾病的概率

扫码查看
目的:建立一个工具能够根据每次访视IgA肾病(IgAN)患者的病情变化,动态预测患者进入终末期肾病(ESKD)的概率.方法:选取 1997-2007 年在国家肾脏疾病临床医学研究中心长期随访的IgAN患者.利用联合模型(Joint model)分析IgAN患者所有访视点的产生纵向数据,实现动态预测患者ESKD的概率,以达到个体化动态预测的目标.我们首先以肾活检时刻为基准建立了临床模型(模型A)和临床病理模型(模型B).模型A的生存子模型部分引入了年龄、性别、尿蛋白定量(Log转换)、估算的肾小球滤过率(eGFR)、eGFR下降斜率、血白蛋白水平等指标;纵向子模型部分引入了年龄、尿蛋白定量、eGFR、eGFR下降斜率以及血清白蛋白水平.模型B在模型A的基础上生存子模型上增加了牛津病理分类指标.模型C是以首次访视时间为基准重新拟合了模型A并评估了其性能.所有的纵向子模型采用访视时间t的非线性混合模型拟合.结果:本研究纳入了866 例IgAN患者,以首次门诊就诊为基线,平均随访时间为 12.2±5.5 年,共访视22 533 人次,平均每个患者访视26 次.随访中 260 例(30.0%)患者进入ESKD,其末次随访平均eGFR为 9.1±3.0 mL/(min·1.73m2).将所有患者按照 3∶1的比例,随机分为建模组(650 例)和测试组(216 例).以肾活检时刻为基线,模型A与模型B的性能基本一致,二者均表现出较高的预测性能,纳入或者剔除病理学变量并未明显增加联合模型对ESKD风险预测的准确性.随着随访时间的增加,模型A的预测性能持续提升,在肾活检后第5 年左右达到最佳性能.AUC值由肾活检时的0.864增至肾活检后第 5 年的0.956;Brier评分由肾活检时的0.124 降至活检后第5 年的0.058.以首次访视时刻为基线的模型C也取得了类似的结果.为方便临床实践,我们利用Shiny包实现了动态预测,并将相关模型R对象、源代码公布在网络上.结论:联合模型可以用于IgAN患者访视点产生的纵向数据,高性能动态预测IgAN患者尿毒症的概率,实现个体化动态预测的目标.
Dynamic prediction of end stage kidney disease for patients with IgA nephropathy
Objective:To develop a personalized dynamically model to predict the risk of kidney failure for patients with IgA nephropathy(IgAN)using updates of longitudinal data at each follow-up visit.Methodology:Three joint models were fitted to analyze the longitudinal data at each visit.We defined the baseline as the time of the kidney biopsy and fitted a clinical joint Model A,which included variables such as sex,age,eGFR,ALB,and proteinuria.We also constructed a clinical-pathological Model B,which incorporated both clinical and histological MEST features.Model C was fitted using parameters identical to those in Model A,however,the baseline was defined as the time of the clinical visit instead of the biopsy.Results:A total of 866 patients were included(650 in the development cohort and 216 in the validation cohort)and contributed 10 565 patient-years of data,and 22 533 eGFR and proteinuria measurements.Models A and B performed similarly with high predictive ability.However,the inclusion or exclusion of pathological variables did not significantly increase or decrease the accuracy of the joint models for predicting kidney failure risk.As follow-up time increased,model A's predictive performance continued to improve,reaching optimal performance around 5 years after kidney biopsy.The AUC value increased from 0.864 at kidney biopsy to 0.956 at 5 years after biopsy,and the Brier score decreased from 0.124 at the time of biopsy to 0.058 at 5 years after biopsy.The model C achieved similar results.All predictive performances were confirmed in the validation cohort.To facilitate clinical practice,we utilized the Shiny package to implement dynamic prediction.The R objects and source code have been made publicly available online.Conclusion:The Joint model can be utilized for the longitudinal data generated from visits of IgAN patients,providing a high-performance dynamic prediction of kidney failure for IgAN patients.This helps achieve the objective of individualized dynamic prediction.

IgA nephropathyjoint modeldynamic predictionend stage kidney disease

乐伟波、施劲松、曾彩虹、梁少姗、李喆、刘志红

展开 >

东部战区总医院 国家肾脏疾病临床医学研究中心(南京,210016)

IgA肾病 联合模型 动态预测 终末期肾病

国家自然科学基金

81970620

2024

肾脏病与透析肾移植杂志
金陵医院肾脏病研究所

肾脏病与透析肾移植杂志

CSTPCD
影响因子:1.091
ISSN:1006-298X
年,卷(期):2024.33(1)
  • 22