首页|基于BP神经网络的矩形沉井下沉土体参数反演研究

基于BP神经网络的矩形沉井下沉土体参数反演研究

扫码查看
各类型的人工神经网络智能算法均在岩土工程参数反演和预测方面得到了广泛应用,但大部分研究都主要集中在坝体、桩基和隧道工程方面,较少应用于沉井基础形式的工程.BP神经网络算法对于施工过程中岩土结构参数的时空变化非常敏感,适用于研究沉井这类经历显著地质扰动和动态位移的基础形式.依托龙潭长江大桥南部锚碇沉井基础项目,运用有限元参数建模,将沉井下沉动态过程划分为多个工况,在不影响模拟精度的情况下,提高了计算效率,得到了多组土体参数与沉井结构应力响应之间的数据组.使用该数据组训练BP神经网络模型,并将现场监测的沉井应力输入到BP神经网络模型中,反演得到了对应的土体参数,分析其变化规律,总结了沉井动态受力特点.该研究结果有助于完善助沉方案,在解决突沉、拒沉等问题方面起到了关键作用.
Study on Parameters Inversion of Rectangular Caisson Sinking Soil Based on BP Neural Network
Various artificial neural network intelligent algorithms have been widely used in geotechnical engineering parameter inversion and prediction.Most of them focus on dam bodies,pile foundations and tunnel engineering.They are rarely used in projects in the form of open caisson foundations.The BP neural network algorithm is suscep-tible to the spatiotemporal changes in geotechnical structure parameters during the construction process so that it is suitable for studying foundation forms of open caisson that experienced significant geological disturbances and dy-namic displacements.Relying on the anchorage open caisson foundation project in the southern part of the Longtan Yangtze River Bridge,the model was built by finite element parameter.The dynamic caisson sinking was divided into multiple working conditions.Without affecting the simulation accuracy,the calculation efficiency is improved to get a data set between multiple sets of soil parameters and the stress response of the open caisson structure.The data sets was used to train BP neural network models.The caisson stress monitored on site was input into the BP neural network model to obtain the corresponding soil parameters by inversion.The parameter change rules were analyzed,and the dynamic stress characteristics of the open caisson were summarized.The research improves the sinking aid scheme and plays a crucial role in solving problems of sudden settlement and resistance to sinking.

caisson sinkingsoil parametersfinite element simulationdata trainingBP neural networkparam-eter inversion

王峻科、郑华凯

展开 >

江苏泰州大桥有限公司,江苏泰州 225300

江苏省交通工程建设局,江苏南京 210004

沉井下沉 土体参数 有限元模拟 数据训练 BP神经网络 参数反演

国家重点研发计划

2021YFB1600300

2024

市政技术
中国市政工程协会 北京市政路桥股份有限公司 北京市政建设集团有限责任公司 北京市市政工程研究院

市政技术

影响因子:0.385
ISSN:1009-7767
年,卷(期):2024.42(3)
  • 7