首页|基于机器学习的城市地下空间需求量预测研究

基于机器学习的城市地下空间需求量预测研究

扫码查看
科学开展城市地下空间需求量预测是城市地下空间规划的重要工作内容.针对当前研究中存在的考虑因素少、定性分析为主、主观性强、预测精度低等不足,基于文献搜集的43组城市地下空间开发量有关数据,首次建立了基于9种机器学习算法的考虑多种因素的城市地下空间需求量预测模型.模型训练时,对特征数据进行了归一化处理,消除了特征量纲对模型性能的影响,并开展了特征提取与选择以确定最优特征组合,同时采用网格搜索技术对模型超参数进行优化,最后采用均方根误差和决定系数2个指标对模型性能进行了综合评价.计算结果表明,城市地下空间需求量最重要的3个影响因素分别为常住人口密度、地均汽车保有量、地均GDP,其在采用不同算法模型时的特征重要性均值分别为0.342、0.187、0.172;特征组合F-1(即使用全部8个特征)为最优特征组合,此时XGB算法模型性能最好,其决定系数为0.970,均方根误差为460.2;采用所构建的BAG算法模型对北京市2020年地下设施开发强度进行了预测,预测误差为9.23%,进一步反映了所构建模型具有较高的准确性.
Prediction of Urban Underground Space Demand by Machine Learning
Accurate prediction of urban underground space demand is an important work for urban underground space planning.In view of the shortcomings of the current research,such as less consideration,qualitative focus,strong subjectivity and low prediction accuracy,based on 43 groups of urban underground space related data in the litera-ture,a multi factor urban underground space demand prediction model was established based on 9 kinds of machine learning algorithm for the first time in this paper.In the process of establishing the model,the characteristic data was normalization processed to eliminate the effect of feature dimension on the model performance.The feature was extracted to select the optimal feature combination.The grid search cross validation technology was used to optimize the model parameters.Finally,the root mean square error and the determination coefficient were used to evaluate the model performance.The calculation results show that the three most 3 important influencing factors of urban un-derground space demand are resident population density,regional average car ownership and regional average GDP,which the mean value of characteristic importance in different algorithm models is 0.342,0.187 and 0.172 respectively;The feature combination of F-l(that is all eight features used)is the optimal feature combination.At this time,the XGB algorithm model has the highest performance with a determination coefficient of 0.970 and a root mean square error of 460.2;Finally,the BAG algorithm model predicts the development intensity of underground facilities in Beijing in 2020 with the prediction error of 9.23%,which further reflects the high accuracy of the model.

machine learningurban underground spacedemandprediction

汤志立、王雪、徐千军

展开 >

北京信息基础设施建设股份有限公司,北京 100068

北京市基础设施投资有限公司,北京 100101

北京市政路桥科技发展有限公司,北京 100037

清华大学水沙科学与水利水电工程国家重点实验室,北京 100084

展开 >

机器学习 城市地下空间 需求量 预测

国家自然科学基金

52090084

2024

市政技术
中国市政工程协会 北京市政路桥股份有限公司 北京市政建设集团有限责任公司 北京市市政工程研究院

市政技术

影响因子:0.385
ISSN:1009-7767
年,卷(期):2024.42(4)
  • 25