首页|基于改进YOLOv5和Deep SORT的桥梁车辆识别及跟踪研究

基于改进YOLOv5和Deep SORT的桥梁车辆识别及跟踪研究

扫码查看
掌握真实的车辆荷载情况对桥梁设计及智能管养具有重要意义.为此,基于计算机视觉技术和深度学习,建立了-种用于桥梁上多车检测和跟踪的算法.首先,收集交通监控视频建立了多种类型车辆的外观特征数据库.其次,建立了多车检测算法,并在所搭建的数据库上对其进行训练和测试.随后,将性能最佳的检测算法与跟踪算法相结合,进而完成桥梁上多车目标的连续跟踪.最后,依托某跨海大桥的交通监控视频对所提方法进行了验证,并评估了算法的可靠性和准确性.实验结果表明:提出的多车检测和跟踪算法的检测准确率较高,跟踪效果较好,在视频序列中稳定性较好,可成功完成桥梁上多车的连续跟踪任务.研究成果可为后续桥梁设计及智能化管养提供数据参考.
Study of Vehicle Detection and Tracking on Bridge by Improved YOLOv5 and Deep SORT
It is of great significance to know the real vehicle load condition for bridge design and intelligent mainte-nance.Therefore,based on computer vision technology and deep learning,the multi-vehicle detection and tracking algorithm on the bridge is established in this paper.Firstly,a vehicle appearance dataset containing multiple types is established by collecting traffic surveillance videos.Secondly,the multi-vehicles detection algorithms is estab-lished and trained and tested on the dataset.Then,the algorithm with the best performance is combined with the best tracking algorithm to complete the multi-vehicle target tracking on the bridge.Finally,based on the traffic monitoring data of a long-span bridge,the improved effect of the algorithm is verified,and the reliability and accu-racy of the proposed algorithm are verified.The experimental results show that the proposed multi-vehicle detection and tracking algorithm has high detection accuracy,better tracking effect and stability in video sequences,which can successfully complete the continuous tracking of multi-vehicles on bridges.The research results can provide da-ta reference for the subsequent intelligent management and maintenance of bridges.

bridge engineeringcomputer visionvehicle loadtarget detectiontarget tracking

赵智勇

展开 >

中交第一公路勘察设计研究院有限公司,陕西西安 710075

桥梁工程 计算机视觉 车辆荷载 目标检测 目标跟踪

2024

市政技术
中国市政工程协会 北京市政路桥股份有限公司 北京市政建设集团有限责任公司 北京市市政工程研究院

市政技术

影响因子:0.385
ISSN:1009-7767
年,卷(期):2024.42(12)