首页|粒子群优化算法-胶囊网络模型的变压器故障诊断

粒子群优化算法-胶囊网络模型的变压器故障诊断

扫码查看
为提高变压器故障诊断的正确率,文本提出了一种粒子群优化算法-胶囊网络模型的变压器故障诊断方法.针对变压器溶解气体数据特征之间关联性不足的弊端,搭建了一维卷积神经网络(One-dimensional Convolutional Neural Network,1D-CNN)与胶囊网络(Capsule Network,CapsNet)相结合的基础分类器(Improved Capsule Network,ICapsNet).为提高基础分类器的诊断性能,采用改进粒子群优化算法(Improved Particle Swarm Optimization,IPSO)对基础分类器的学习率进行优化.经过实验可得:所提方法的诊断样本正确率达到94.44%,相较于传统CapsNet提升了 4.76%;在基础分类器中增加IPSO优化学习率,模型正确率提高3.96%,研究结果可为变压器故障诊断提供新思路.
Particle Swarm Optimization Algorithm-Capsule Network Model for Transformer Fault Diagnosis
In order to improve the accuracy of transformer fault diagnosis,this paper proposed a particle swarm opti-mization algorithm-capsule network model for transformer fault diagnosis method.To address the drawback of insuffi-cient correlation between the features of dissolved gas data in transformers,a basic classifier combining a one-dimen-sional convolutional neural network(1D-CNN)and a capsule network(CapsNet)was constructed(Improved Capsule network,ICapsNet).To enhance the diagnostic performance of the basic classifier,an improved particle swarm opti-mization algorithm(IPSO)was used to optimize the learning rate of ICapsNet.Experimental results showed that the proposed method achieved a diagnostic accuracy of 94.44%,which was an improvement of 4.76%compared to the traditional CapsNet.Additionally,by incorporating IPSO to optimize the learning rate of ICapsNet,the model's accu-racy increased by 3.96%.The research findings provided a new approach for transformer fault diagnosis.

Power transformerFault diagnosisCapsule networkParticle swarm optimization

刘傲迪

展开 >

安徽理工大学电气与信息工程学院,安徽淮南,232001

电力变压器 故障诊断 胶囊网络 粒子群优化

2024

宿州学院学报
宿州学院

宿州学院学报

影响因子:0.322
ISSN:1673-2006
年,卷(期):2024.39(9)