首页|基于SWMM的污水管网外来水量入渗反演识别研究

基于SWMM的污水管网外来水量入渗反演识别研究

扫码查看
基于贝叶斯理论,结合蒙特卡罗马尔可夫链算法,对SWMM的水质水动力模块进行了二次开发,反推了管网入渗的节点位置、入渗流量时间序列等特征参数;分析了随机游走、均匀分布和正态分布分别作为建议分布对反演精度的影响,并对贝叶斯理论下蒙特卡罗马尔科夫链算法的似然函数进行了改进。结果表明:3种建议分布均可在贝叶斯理论下达到收敛,均匀分布与正态分布对算法初值的依赖较小,算法的全局遍历性较好,随机游走则会因局部最优降低反演精度;3种建议分布下的反演过程均出现误差累积现象,采用改进后的蒙特卡罗马尔科夫链算法可有效避免误差的累积,提高了时间序列变量的反演精度。
Study on identification and inversion of external water leakage in sewage pipeline network based on SWMM
Based on Bayesian theory and combined with Monte Carlo Markov chain algorithm,a secondary development of water quality hydrodynamic module of SWMM was carried out,and characteristic parameters such as node positions and infiltration flow time series of the pipeline network were deduced.Analyze the impact of random walk,uniform distribution,and normal distribution as suggested distributions on inversion accuracy,and improve the likelihood function of the Monte Carlo Markov chain algorithm under Bayesian theory.The results indicate that all three suggested distributions can converge under Bayesian theory.Uniform distribution and normal distribution have less dependence on the initial value of the algorithm,and the algorithm has good global traversal.Random walk will reduce the inversion accuracy due to local optima.The inversion process under the three suggested distributions all showed error accumulation.The modified Monte Carlo Markov chain algorithm can effectively avoid the accumulation of errors and improve the inversion accuracy of the time series variable.

sewage pipeline networkwater leakage flowtraceability inversionBayesian theorySWMM

常留红、薛雄、郭洋、高宏宇、邬传峰

展开 >

长沙理工大学水利与环境工程学院,湖南长沙 410114

长沙理工大学水沙科学与水灾害防治湖南省重点实验室,湖南长沙 410114

南京水利科学研究院港口航道泥沙工程交通行业重点实验室,江苏南京 210029

污水管网 入渗流量 溯源反演 贝叶斯理论 SWMM

国家重点研发计划项目南京水利科学研究院开放基金项目

2021YFC3200403YK222001-8

2024

水资源保护
河海大学 中国水利学会环境水利研究会

水资源保护

CSTPCD北大核心EI
影响因子:0.827
ISSN:1004-6933
年,卷(期):2024.40(5)