水资源保护2024,Vol.40Issue(6) :104-112,164.DOI:10.3880/j.issn.1004-6933.2024.06.012

基于元启发式算法优化的新乡市洪水风险评价

Flood risk assessment in Xinxiang City based on meta-heuristic algorithm optimization

李红艳 郝景开 刘大为 张峰 毛立波 王有理
水资源保护2024,Vol.40Issue(6) :104-112,164.DOI:10.3880/j.issn.1004-6933.2024.06.012

基于元启发式算法优化的新乡市洪水风险评价

Flood risk assessment in Xinxiang City based on meta-heuristic algorithm optimization

李红艳 1郝景开 1刘大为 1张峰 1毛立波 2王有理3
扫码查看

作者信息

  • 1. 太原理工大学环境与生态学院,山西晋中 030600;山西省市政工程研究生教育创新中心,山西晋中 030600
  • 2. 山西大地环境投资控股有限公司科创管理部,山西太原 030032
  • 3. 山西山安碧泉海绵城市科技有限公司,山西太原 030032
  • 折叠

摘要

为提高新乡市洪水风险评价模型的评估能力,采用层次分析法(AHP)、逻辑回归(LR)模型、BP神经网络、随机森林(RF)模型以及结合元启发式算法粒子群优化(PSO)的PSO-BP模型和PSO-RF模型6种方法对新乡市进行洪水风险评估,生成包含200个洪水位置的洪水清单图.选择9个洪水影响因子,采用方差膨胀因子分析了洪水影响因子与洪水发生的相关性.利用混淆矩阵和受试者工作特性曲线对比6种洪水风险评估方法的评估能力,最后获得6种方法的洪水风险分布图.结果表明:PSO-RF、PSO-BP模型的评估效果优于单一算法,受试者工作特性曲线下面积分别为0.953、0.947;根据得到的洪水风险分布图,新乡市至少36.5%的地区被列为高度易受洪水影响的地区,耦合元启发式算法后的洪水风险评价模型具有更高精度.

Abstract

To improve the evaluation capability of the flood risk assessment model in Xinxiang City,six methods including analytic hierarchy process(AHP),logistic regression(LR)model,BP neural network,random forest(RF)model,and PSO-BP model and PSO-RF model combined with meta-heuristic algorithm particle swarm optimization(PSO)were used to conduct flood risk assessment in Xinxiang City,generating a flood inventory map containing 200 flood locations.Nine flood impact factors were selected,and the correlation between flood impact factors and flood occurrence was analyzed using variance inflation factor.The evaluation capabilities of six flood risk assessment methods were compared using confusion matrix and subject working characteristic curve,and finally obtaining the flood risk distribution maps of the six methods.The results show that the evaluation performance of PSO-RF and PSO-BP models is better than that of single algorithms,and the area under curve of the receiver operating characteristic curve is 0.953 and 0.947,respectively.According to the obtained flood risk distribution map,at least 36.5%of the areas in Xinxiang City are classified as highly susceptible to flood impacts,and the flood risk assessment model coupled with meta-heuristic algorithm has higher accuracy.

关键词

洪水风险评价模型/元启发式算法/洪水风险分布图/受试者工作特性曲线/新乡市

Key words

flood risk assessment model/meta-heuristic algorithm/flood risk distribution map/receiver operating characteristic curve/Xinxiang City

引用本文复制引用

出版年

2024
水资源保护
河海大学 中国水利学会环境水利研究会

水资源保护

CSTPCD北大核心EI
影响因子:0.827
ISSN:1004-6933
段落导航相关论文