首页|基于人工智能的体外受精-胚胎移植患者需求的大数据分析

基于人工智能的体外受精-胚胎移植患者需求的大数据分析

扫码查看
目的 基于人工智能(artificial intelligence,AI)与大数据技术分析接受(或意向接受)体外受精-胚胎移植(IVF-ET)助孕治疗患者(IVF-ET患者)的需求,为专科医护提供参考。方法 通过互联网数据采集和算法建模收集2010-2019年IVF-ET患者在社交媒体上交流的信息,分析IVF-ET患者的年龄和性别分布、网络交流健康信息趋势、患者所患疾病类型、给药情况、患者关注重点等信息,并对影响患者情绪的相关因素进行分析。结果 2010-2019年,IVF-ET患者在社交媒体上交流相关问题的热度越来越高。30~35岁的IVF-ET需求人群在互联网上最为庞大,选择网上咨询IVF-ET相关事宜的患者多为女性不孕患者。患者给药情况中,提及次数最多的药物为黄体酮注射液,提及最多的给药方式为阴道给药,且接受一种黄体酮类药物治疗的患者最多。患者在IVF-ET过程中关注的重点主要包括负面心理、妊娠指标及经济因素。未受孕及阴道给药的患者,容易产生负面情绪。结论 基于AI的大数据分析能帮助专科医护了解IVF-ET患者的实际需求,医护人员需加强宣教及指导,帮助患者树立正确的认识及维持良好的情绪状态。
Big data analytics in disclosing IVF-ET patients'deeds based on artificial intelligence
Objective:To investigate the needs of the patients who were accepting or intended to accept in vitro fertilization-embryo transfer(IVF-ET)on social media based on artificial intelligence(AI)and big data analytics,which will provide a reference for medical staff.Methods:By collecting internet data and using algorithm modeling,we collected the information exchanged by IVF-ET patients on social media from 2010 to 2019.And we analyzed the distribution of patients'age and gender,trends in online communication regarding health information,types of diseases patients suffered from,the medication,patients'concerns and the factors related to patients'emotion.Results:During 2010-2019,IVF-ET patients had been increasingly sharing IVF-ET-related information on social media.The population of IVF-ET patients aged 30-35 was the largest on the Internet.Most of the patients who chose to consult IVF-ET-related information online were female infertile patients.In the case of medication,the most frequently mentioned drug was progesterone injection,the most frequently mentioned way of medication was vaginal administration,and the largest number of patients were treated with one kind of progesterone drugs.The main factors patients cared about were negative emotions,pregnancy indicators and economic factors.Patients who had failed in IVF-ET or received vaginal administration of progesterone were prone to have negative emotions.Conclusions:AI-based big data analytics can help specialists and nurses understand the actual needs of IVF-ET patients.Both clinicians and nurses need to strengthen education and instruct patients to establish correct understanding,as well as maintain a good emotional state.

In vitro fertilization and embryo transferArtificial intelligenceAssisted reproductive technologyNeedsEmotion

林嘉雨、常亚杰、李婷婷、陈攀、庄德恩、李永芳、陈伟熙、王艳芳、梁晓燕、李晶洁

展开 >

中山大学附属第六医院北院区生殖医学中心,广州 510000

香港大学李嘉诚医学院妇产科系,香港 999077

中山大学附属第一医院药学部,广州 510080

杭州火石数智科技有限公司,杭州 310051

广州市黄埔区中六生物医学创新研究院,广州 510700

展开 >

体外受精与胚胎移植 人工智能 辅助生殖技术 需求 情绪

国家重点研发计划广东省科技计划中山大学青年教师培训项目

2021YFC27004002016A02021800619ykpy04

2024

生殖医学杂志
北京协和医院 国家人口计生委科学技术研究所

生殖医学杂志

CSTPCD
影响因子:1.24
ISSN:1004-3845
年,卷(期):2024.33(4)
  • 26