首页|基于最优蠕滑率的列车制动滑模控制研究

基于最优蠕滑率的列车制动滑模控制研究

扫码查看
列车在制动过程中,由于轨面状态的变化会导致列车无法充分利用轮轨之间的黏着力,从而影响列车的制动性能.为保证列车在制动过程中的平稳安全运行,改善列车的制动性能,建立了列车制动单轴动力学模型,利用卡尔曼滤波算法来估计轮轨的黏着系数,并采用一种自适应遗忘因子的递推最小二乘算法来估计列车的最优参考蠕滑率.在此基础上,提出了一种基于RBF神经网络的自适应滑模控制算法对列车的制动力矩进行控制,最后利用Matlab/Simulink进行建模仿真.结果表明,该控制算法不仅可以使列车实时运行在当前轨面的最大黏着系数点附近,充分利用轮轨黏着力进行最优制动控制,还能减小传统滑模控制的抖振问题,实现了列车的最优黏着制动控制.
Research on Train Braking Sliding Mode Control Based on Optimal Creep Rate
The train can not make full use of the adhesion between the wheel and rail during the braking service,which affects the braking performance of the train because track surface change.In order to ensure the steady and safe operation of the train during the braking service and improve the braking performance of the train,a single-axle dynamic model of the train braking was established.A Kalman filter algorithm was used to estimate the wheel-rail adhesion coefficient and an adaptive forgetting factor recursive least squares algorithm is used to estimate the optimal reference creep rate.On this basis,an adaptive sliding mode control algorithm based on RBF neural network is proposed to control the train braking torque.The results show that the control algorithm can not only make the train run in real time near the point of maximum adhesion coefficient of the current track surface,but also make full use of the wheel-rail adhesion to carry out optimal braking control,the chattering problem of the traditional sliding mode control can be reduced,and the optimal adhesion braking control of the train is realized.

brake controladhesionKalman filterleast squaresadaptive sliding mode control

陈春俊、李润林

展开 >

轨道交通运维技术与装备四川省重点实验室,成都 610031

西南交通大学 机械工程学院,成都 610031

制动控制 黏着力 卡尔曼滤波 最小二乘法 自适应滑模控制

2024

铁道机车车辆
中国铁道科学研究院 中国铁道学会牵引动力委员会

铁道机车车辆

北大核心
影响因子:0.254
ISSN:1008-7842
年,卷(期):2024.44(5)