Flange Strength Analysis of EMU Wheels with Thin-flange Turning Profile
In view of the fact that the minimum flange thickness is mostly determined by experience in engineering practice,a three-dimensional wheel-rail static contact finite element model considering the thin flange turning profile of CR400AF EMU wheels is established by using ANSYS.The steel rail is CN60,the minimum wheel diameter is 850 mm,and the wheel-rail load is taken from the UIC 510-2020 standard.The wheel-rail contact state under different lateral displacement and load is analyzed,and the stress distribution of rim and flange under three typical flange thickness of 22.0 mm,26.0 mm and 32.9 mm is compared.The distribution characteristics of stress field inside the rim,the amplitude and location of the maximum stress under the conditions of designed profile contact and worn conformal contact are analyzed,and the variation law of characteristic stress with the thickness of the rim is summarized.Taking the allowable stress of the wheel of 360 MPa as the evaluation criterion,it is found that the flange strength of wheel with the thinnest wheel flange of 22.0 mm used in practice is guaranteed.In summary,the contact analysis strategy for safety assessment of thin flange wheels is put forward,which lays a foundation for the future research of minimum rim thickness and provides key service stress information for the current operation of thin flange wheels.