首页|有砟铁路路基层位变形智能识别方法

有砟铁路路基层位变形智能识别方法

扫码查看
针对探地雷达单期数据无法获取路基层位变化情况的问题,提出了一种基于周期性检测的铁路路基层位变形智能识别方法.首先采用YOLO v5模型识别雷达图像中的桥梁设备,通过与设备表模糊匹配实现多时相数据的里程配准,再基于U-Net模型对多期数据中的路基层位线进行准确识别,最后根据年变形量提取路基显著变形的里程范围,为养护维修决策提供数据支撑.采用实测数据进行了测试试验.结果表明:多期数据配准精度满足应用需求,自动识别的层位线与人工追踪结果相近,有效提升了探地雷达周期性检测数据的处理效率和精度,为铁路路基层位变形检测提供了一种新方法.
Intelligent Identification Method for Subgrade Layer Deformation of Ballasted Railway
In response to the challenge of acquiring subgrade layer changes in single-phase ground-penetrating radar(GPR)data,an intelligent identification method for subgrade layer deformation based on periodic detection has been proposed.Firstly,the YOLO v5 model was employed to identify bridge equipment in radar images.By matching with the equipment table,the mileage registration of multi-temporal data was achieved.Subsequently,the U-Net model was utilized to accurately identify the subgrade location lines in multi-phase data.Finally,based on the annual deformation,the mileage range of significant subgrade deformation was extracted,providing data support for maintenance and repair decisions.Subsequently,experimental tests were conducted using actual measured data.The results indicate that the registration accuracy of multi-phase data meets the application requirements.The automatically identified layer boundaries are close to the results of manual tracing,effectively enhancing the processing efficiency and precision of periodic ground penetrating radar(GPR)detection data.This could provide a novel approach for detecting deformation in railway subgrade layers.

railway subgradelayer deformationperiodic detectionlayer identificationground-penetrating radarmachine learning

詹绍佳、杜翠、张栋、徐天新、宋玉

展开 >

中国铁道科学研究院集团有限公司 铁道建筑研究所,北京 100081

北京交通大学 机械与电子控制工程学院,北京 100044

北京天立秀科技有限公司,北京 100192

铁路路基 层位变形 周期性检测 层位识别 探地雷达 机器学习

国家自然科学基金国家能源投资集团有限责任公司科技创新项目朔黄铁路公司科技创新项目

U2268216GJNY-21-115-39SHTL-23-25

2024

铁道建筑
中国铁道科学研究院

铁道建筑

北大核心
影响因子:0.623
ISSN:1003-1995
年,卷(期):2024.64(4)
  • 17