首页|基于结构振动响应的长型浮置板轨道隔振器失效检测方法

基于结构振动响应的长型浮置板轨道隔振器失效检测方法

扫码查看
目前钢弹簧浮置板轨道的隔振器失效判别主要依赖于人工巡检或视觉成像系统,但此类方法效率低、检测滞后且成本高昂.本文提出了一种自动化的检测方法,该方法利用残差学习思想和卷积神经网络基本理论构建数据分类器,并通过列车动荷载作用下的结构动力响应对现役某常见的长型浮置板轨道进行隔振器失效的检测识别.首先,基于车-轨垂向耦合动力学建立考虑隔振器不同服役状态的地铁车辆-浮置板轨道垂向耦合动力学仿真分析模型,进而生成多种运营工况下的数据集,用于网络的训练和性能测试;其次,进一步研究了传感器布置方式对网络检测性能的影响,以决定适宜的传感器布置方案;最后,在实际地铁线路中开展试验,对所提出的方法进行了验证.结果表明:通过对传感器布置位置进行优化,深度残差网络模型的检测准确性显著提升;合理设置传感器的数量也可以提高本文方法的检测性能;此外,通过适当选取传感器布置方案,本文提出的基于深度残差网络的隔振器失效检测方法在仿真数据中实现了98.99%的准确度,并在试验数据中实现了96.33%的准确度.该方法具有较高的可行性和应用潜力,可为地铁浮置板隔振器智能运维提供参考,并有望在未来用于隔振器失效的自动化检测.
Failure Detection Method of Vibration Isolator of Long-size Floating Slab Track Based on Structure Vibration Response
At present,the failure identification of vibration isolator of steel spring floating slab track mainly depends on manual inspection or visual imaging system,but such kinds of methods are inefficient,slow in detection,and costly.In order to improve the current unfavorable situation of vibration isolator failure detection,this paper proposed an automatic detection method.The method uses the residual learning idea and the basic theory of convolutional neural network to build a data classifier,which identifies the failure of vibration isolators for an in-service common long-size floating slab track through the structural dynamic response caused by the train dynamic load.Firstly,based on the vehicle-track vertical coupling dynamics theory,a vertical coupling dynamic simulation analysis model of subway vehicle and floating slab track considering different service states of vibration isolators is established.Then a data set under different operating conditions were generated the network training and performance testing.Furthermore,the influence of different sensor deployments on the detection performance is investigated and the appropriate sensor deployments are determined.Finally,an experiment was carried out in a actual subway line to validate the proposed method.The results indicate that the detection accuracy of the ResNet model can be significantly improved by optimizing the sensor deployment.The reasonable set of the number of sensors can also improve the detection performance of the network model.By properly selecting the sensor deployment,the proposed vibration isolator failure detection method based on the ResNet can achieve an accuracy of 98.99%on simulation data,and 96.33%on field data.This method has high feasibility and application potential,which can provide a technical reference for intelligent operation and maintenance of floating slab vibration isolators in subway transportation,and is expected to be applied in the future for automatic detection of vibration isolators failure.

floating slab trackvibration isolatorfailure detectionvibration responsevehicle-track coupling dynamicsdeep learningresidual network

巫江、卢宁、庞玲、高建敏、张庆铼、朱胜阳

展开 >

中铁二院工程集团有限责任公司,成都 610031

西南交通大学 轨道交通运载系统全国重点实验室,成都 610031

浮置板轨道 隔振器 失效检测 振动响应 车辆-轨道耦合动力学 深度学习 残差网络

2024

铁道建筑
中国铁道科学研究院

铁道建筑

北大核心
影响因子:0.623
ISSN:1003-1995
年,卷(期):2024.64(6)