首页|未来社区智慧泊车的少样本计数模型研究

未来社区智慧泊车的少样本计数模型研究

扫码查看
在未来社区中如何更加人性化、智慧化地为居民提供泊车引导服务是未来社区建设的基础之一.本文提供了一种基于目标计数的模型来准确实时地检测空缺车位,为该服务提供技术支持,该模型采用基于卷积神经网络的密度图估计方法对车辆以及空车位进行计数,除为居民提供泊车引导外,还能够为社区管理提供汽车出入流量控制数据依据以及为宏观统筹端提供各社区数据以实现多社区车位共享;并对现有目标计数方法进行数据增强,试验结果表明模型在数据增强后MAE提升15.7%,RMSE提升25.81%.同时,该模型有较好的可扩展性,可以应用在其他领域.
Research on Few-Shot Object Counting Model for Smart Parking in Future Communities
Ensuring a more user-friendly and intelligent provision of parking guidance services to residents is fundamental to future community development.This paper presents an object-counting-based approach for accurate and real-time detection of available parking spaces,offering technological support for this service.The model employs a convolutional-neural-network-based density estimation technique to count vehicles and available parking spaces.In addition to providing parking guidance for residents,it also serves as a source of traffic flow data for community management and facilitates macro-level data aggregation for multi-community parking space sharing;meanwhile,we perform data augmentation for the existing object counting method,and the experimental results show that the MAE of the model is improved by 15.7%and the RMSE is improved by 25.81%after data augmentation.Furthermore,this model demonstrats excellent versatility and can be applied to various other domains.

future communityobject countingsmart parkingfew-shot counting model

张平、陈天来、陈照、王翼飞

展开 >

中国铁建电气化局集团有限公司 北京 100043

武汉昊广智联科技有限公司 湖北武汉 430074

未来社区 目标计数 智慧泊车 少样本计数模型

中国铁建股份有限公司科技重大专项

2021-A04

2024

铁道建筑技术
中国铁道建筑总公司

铁道建筑技术

影响因子:0.539
ISSN:1009-4539
年,卷(期):2024.(1)
  • 11