首页|基于SDAE的连续梁桥损伤识别方法研究

基于SDAE的连续梁桥损伤识别方法研究

扫码查看
基于动力检测的桥梁损伤识别常采用BP神经网络、SVM等方法,这些方法学习时间长,计算过程复杂,并与损伤指标的选取密切相关,损伤指标的获取难度、敏感性对识别效果有着至关重要的作用.为实时判断桥梁结构状态,利用云计算、大数据深度学习计算能力大幅提升的优势,提出一种基于SDAE(stacked DAE,堆叠去噪自编码器)网络的连续梁桥结构损伤识别定位方法.以两等跨混凝土连续梁桥为对象,直接采集结构的加速度响应值,通过堆叠去噪自编码器识别不同噪声环境下单损伤和多损伤位置,从识别准确率、抗噪性能方面与现有的机器学习方法BP神经网络、SVM支持向量机进行比较,验证其可靠性和适用性.
Research on Damage Identification Method for Continuous Beam Bridges Based on SDAE
The identification of bridge damage based on dynamic detection often uses methods such as BP neural network and SVM.These methods have a long learning time,complex calculation process,and are closely related to the selection of damage indicators.The difficulty and sensitivity of obtaining damage indicators play a crucial role in the recognition effect.To determine the status of bridge structures in real-time,a continuous beam bridge structural damage identification and localization method based on SDAE(stacked denoising autoencoder)network is proposed,utilizing the advantages of cloud computing and deep learning computing capabilities of big data.Two span concrete continuous beam bridges are used as objects,and the acceleration response values of the structure are directly collected.The stacked denoising autoencoder is used to identify single and multiple damage locations in different noise environments,it is compared with existing machine learning methods such as BP neural network and SVM support vector machine in terms of recognition accuracy and noise resistance to verify its reliability and applicability.

continuous beam bridgedamage identificationacceleration response valuestacked denoising autoencoder

王鹏

展开 >

中铁十六局集团有限公司 北京 100018

连续梁桥 损伤识别 加速度响应值 堆叠去噪自编码器

中铁十六局集团有限公司科技研发计划

K2019-9C

2024

铁道建筑技术
中国铁道建筑总公司

铁道建筑技术

影响因子:0.539
ISSN:1009-4539
年,卷(期):2024.(1)
  • 11