首页|基于BP神经网络的盾构主轴承激光熔覆形貌预测研究

基于BP神经网络的盾构主轴承激光熔覆形貌预测研究

扫码查看
本文主要围绕盾构机主轴承激光熔覆修复工艺,针对工艺参数对熔覆区域映射难以表征的问题,为实现通过工艺参数预测单道次熔覆区域形貌尺寸以进一步提高整体熔覆区域性能,提出基于BP神经网络的主轴承激光熔覆工艺形貌预测模型.首先,以42CrMo轴承钢作为基体、stellite6 作为熔覆粉末材料开展 3 因素 4 水平正交试验,并以熔高、熔宽、熔深作为指标;然后,以正交试验所得指标以及工艺参数为数据基础,设计并训练BP神经网络模型;最后将预测得到的形貌尺寸与实际尺寸进行对比并求出两者之间的误差.通过分析试验结果,发现模型对于熔高、熔宽预测误差在2%以内,而对于熔深的预测效果较差.分析结果认为网络模型的权值由于数据的局限性陷入了局部最优解.
Research on Laser Cladding Morphology Prediction of Shield Machine Main Bearing Based on BP Neural Network
This paper revolves around the laser cladding repair process for shield machine main bearings.In addressing the challenge of accurately characterizing the mapping of process parameters to the clad area,and aiming to predict the morphology dimensions of a single cladding pass for enhancing the overall performance of the clad region,we propose a BP neural network-based predictive model for the laser cladding process morphology of main bearing.Firstly,a 3-factor 4-level orthogonal experiment is conducted using 42CrMo bearing steel as the substrate and stellite6 as the cladding powder material,with clad height,width,and depth as the indicators.Subsequently,based on the indicators obtained from the orthogonal experiment and the process parameters,a BP neural network model is designed and trained.Finally,the predicted morphology dimensions are compared with the actual dimensions to calculate the errors.Analysis of the experimental results reveals that the model exhibits prediction errors within 2%for clad height and width,but the prediction performance for clad depth is less satisfactory.The analysis attributes this to the limitation of data leading the network model's weights to converge to a local optimum.

main bearinglaser claddingneural networkorthogonal experimentmorphology prediction

杨伦磊

展开 >

中铁十四局集团装备有限公司 江苏南通 226000

主轴承 激光熔覆 神经网络 正交试验 形貌预测

中铁十四局集团有限公司科技研发计划

2022-18

2024

铁道建筑技术
中国铁道建筑总公司

铁道建筑技术

影响因子:0.539
ISSN:1009-4539
年,卷(期):2024.(4)
  • 12