首页|隧道掘进新型水压爆破预测模型研究与应用

隧道掘进新型水压爆破预测模型研究与应用

扫码查看
为全面科学分析多维爆破特征参数与爆破效果之间的内在联系,利用机器学习技术对隧道掘进实测数据深度挖掘分析.基于隧道掘进新型水压爆破的发展及技术,提出了构建BO-LightGBM预测优化模型,用于全面预测爆破效果指标.并将预测模型成功应用在实际工程项目,应用结果分析表明,BO-LightGBM预测优化模型具有一定可行性,平均绝对误差(MAE)达到3.729,均方根误差(RMSE)达到5.576,决定系数(R2)达到0.783.这为现场施工技术人员提供隧道爆破掘进快捷设计崭新途径,尽快进入实际爆破省时省工省费用.该项新型水压爆破技术预测模型,经中国爆破行业协会鉴定为国际领先.
Research and Application of a New Prediction Model for Hydraulic Blasting in Tunnel Excavation
To comprehensively and scientifically analyze the intrinsic relationship between multi-dimensional blasting characteristic parameters and blasting effects,machine learning technology is used to deeply mine and analyze the measured data of tunnel excavation.Based on the development and technology of new hydraulic blasting in tunnel excavation,a BO-LightGBM prediction optimization model was proposed to comprehensively predict the blasting effect indicators.And the prediction model was successfully applied in practical engineering projects.The analysis of the application results show that the BO-LightGBM prediction optimization model has certain feasibility,with an average absolute error(MAE)of 3.729,a root mean square error(RMSE)of 5.576,and a coefficient of determination(R2)of 0.783.This provides a new and efficient way for on-site construction technicians to design tunnel blasting excavation,and saves time,labor,and costs for quickly entering the actual blasting process.The prediction model of this new water pressure blasting technology has been identified as internationally leading by the China Blasting Industry Association.

tunnel excavationnew water pressure blastingprediction modelblasting effectmachine learning

何广沂、王硕龙

展开 >

中铁第五勘察设计院集团有限公司 北京 102600

山东科技大学资源学院 山东泰安 271019

隧道掘进 新型水压爆破 预测模型 爆破效果 机器学习

2024

铁道建筑技术
中国铁道建筑总公司

铁道建筑技术

影响因子:0.539
ISSN:1009-4539
年,卷(期):2024.(7)
  • 10