首页|基于深度学习的隧道围岩位移预测研究

基于深度学习的隧道围岩位移预测研究

扫码查看
隧道围岩变形预测预报对指导隧道施工及动态防护、保障隧道长期安全运行具有重要的理论及工程实际意义.为更有效地预测隧道围岩变形,以高原某隧道现场实测拱顶位移监测数据为例,引入变分模态分解(VMD)方法进行监测时间序列预处理,提取并分解关键围岩变形信号;提出采用粒子群优化(PSO)算法优化的门控循环单元(GRU)模型和长短期记忆(LSTM)模型进行分解位移的深度学习预测;进一步将所有子模型的预测结果进行合并,重构拱顶下沉累积位移预测结果.实例验证结果表明:本文提出的VMD-PSO-GRU模型可提高隧道围岩变形的预测精度粒子群优化算法,作为隧道围岩变形预测的新方法.
Research on Tunnel Surrounding Rock Displacement Prediction Based on Deep Learning
The prediction and forecast of tunnel surrounding rock deformation has important theoretical and practical significance for guiding tunnel construction,dynamic protection,and ensuring long-term safe operation of tunnels.To more effectively predict the deformation of tunnel surrounding rock,taking the measured arch displacement monitoring data of a tunnel in highland as an example,the variational mode decomposition(VMD)method was introduced for monitoring time series preprocessing,extracting and decomposing key deformation signals of surrounding rock.A deep learning prediction of decomposition displacement using a gated recurrent unit(GRU)model and a long short-term memory(LSTM)model optimized by particle swarm optimization(PSO)algorithm was proposed.Furthermore,the prediction results of all sub models were merged to reconstruct the cumulative displacement prediction results of arch crown settlement.The example verification results show that the VMD-PSO-GRU model proposed in this article can improve the prediction accuracy of tunnel surrounding rock deformation,and serve as a new method for predicting tunnel surrounding rock deformation.

tunnel engineeringsurrounding rock displacement predictionvariational mode decomposition(VMD)particle swarm optimization(PSO)gated recurrent unit(GRU)long short-term memory(LSTM)network

刘兵

展开 >

中铁十六局集团第一工程有限公司 北京 101300

隧道工程 围岩位移预测 变分模态分解 粒子群优化算法 门控循环单元 长短期记忆网络

2024

铁道建筑技术
中国铁道建筑总公司

铁道建筑技术

影响因子:0.539
ISSN:1009-4539
年,卷(期):2024.(9)