首页|旅客"门到门"城际出行路径规划研究综述

旅客"门到门"城际出行路径规划研究综述

扫码查看
城市群一体化进程加速推进,城际出行需求日益增长.为提高旅客出行服务质量、促进绿色出行,研究全面回顾了近10年旅客"门到门"出行路径规划的国内外研究成果.系统分析了单一出行方式和组合出行方式下的路径规划问题建模,归纳总结了最短路径算法、A*算法、Dijkstra算法等路径搜索算法的特点及其适用场景.在出行路径推荐方面,梳理了基于不同数据类型(如问卷数据、历史出行轨迹数据)的路径推荐方法,并详细介绍了人工智能算法,特别是深度学习和强化学习技术在特征提取与推荐模型构建中的应用进展.未来研究应进一步关注多交通方式的智能整合与优化,构建更加精细化的出行服务系统,并推动"端到端"路径规划系统的实现,推动智能交通发展和绿色出行优化.
Research Review of"Door-to-Door"Intercity Travel Path Planning for Passengers
With the accelerated advancement of urban agglomeration integration,intercity travel demand is increasingly growing.To enhance the quality of passenger travel services and promote green travel,this study comprehensively reviewed Chinese and international research achievements over the past decade on"door-to-door"travel path planning.It systematically analyzed the modeling of path planning problems for single-mode and multimodal travel and summarized the characteristics and applicable scenarios of path search algorithms such as the shortest path algorithm,A* algorithm,and Dijkstra algorithm.In terms of travel path recommendations,methods based on various data types(e.g.,survey data and historical travel trajectory data)were reviewed,with detailed discussions on the application progress of artificial intelligence algorithms,particularly deep learning and reinforcement learning technologies,in feature extraction and recommendation model construction.Future research should focus on the intelligent integration and optimization of multimodal transportation,the construction of more refined travel service systems,and the realization of"end-to-end"path planning systems,so as to promote intelligent transportation development and optimize green travel.

Travel Path PlanningPath SearchPath RecommendationPersonalizationMobility as a Service

李得伟、吕佳晰、黄悦、徐恩华、杨瑞霞、戴智丞

展开 >

北京交通大学 交通运输学院,北京 100044

北京交通大学 智慧高铁系统前沿科学中心,北京 100044

中咨高技术咨询中心有限公司,北京 100048

出行路径规划 路径搜索 路径推荐 个性化 出行即服务

2025

铁道运输与经济
中国铁道科学研究院

铁道运输与经济

北大核心
影响因子:0.924
ISSN:1003-1421
年,卷(期):2025.47(1)