首页|支持向量机与Logistic回归模型在早期识别早产儿革兰阴性菌晚发型败血症中的研究

支持向量机与Logistic回归模型在早期识别早产儿革兰阴性菌晚发型败血症中的研究

Application of support vector machine and Logistic regression in early identification of late-onset sepsis caused by gram-negative bacteria in preterm infants

扫码查看
目的:探讨支持向量机(SVM)与Logistic回归(LR)模型在早期识别早产儿革兰阴性菌晚发型败血症中的应用.方法:回顾分析2015 年1 月至2019 年12 月期间我院早产儿监护病房晚发型败血症血培养阳性患儿的临床资料.根据临床资料分为革兰阴性杆菌败血症组及非革兰阴性杆菌败血症组,采用倾向性评分1∶ 1 的比例对两组病例组中的混淆因素进行匹配,匹配成功后通过临床指标进行分析,分别采用SVM和LR建立预测模型.根据模型实用性,采用敏感度、特异度、阳性预测值、阴性预测值及受试者工作特征曲线下面积(AUC)等指标进行模型效果评价.应用净重新分类指数(NRI)评价两个模型的预测能力.结果:2015 年1 月至2019 年12 月住院期间晚发型败血症血培养阳性的早产儿共84 例,其中革兰阴性杆菌败血症31 例,非革兰阴性杆菌败血症53 例.分别对两组混淆因素进行倾向性评分,成功匹配29 对.选取19 个临床指标经过SVM和LR建模后,最终SVM筛选出4 个危险因素进行建模,LR筛选出3 个危险因素进行建模.SVM模型的敏感度、特异度、阳性预测值、阴性预测值及AUC均优于LR模型.经过NRI计算,SVM模型的预测能力高于LR模型(P<0.05).结论:在小样本分类预测方面,SVM模型比LR模型更具有实用价值.白细胞计数、中心静脉导管留置时长、脉压差和C-反应蛋白可以作为早期识别早产儿革兰阴性菌晚发型败血症的危险因素.
Objective:To investigate the application of support vector machine(SVM)and Logistic regression(LR)in the early identification of late-onset sepsis caused by gram-negative bacteria in preterm infants.Methods:A retrospective analysis was conducted on the clinical data of patients exhibiting positive blood cultures for late-onset sepsis in the neonatal intensive care unit from January 2015 to December 2019.Based on the clinical data,patients were categorized into the gram-negative bacilli sepsis group and the non-gram-negative bacilli sepsis group.Confounding factors in both groups were meticulously matched using a propensity score matching(PSM)of 1∶ 1.Subsequently,clinical indicators were analyzed post-successful matching,and predictive models were formulated using SVM and LR.The models were assessed for practicality,incorporating sensitivity,specificity,positive predictive value,negative predictive value,and the area under the receiver operating characteristic curve(AUC).The net reclassification index(NRI)was employed to evaluate the predictive capabilities of both models.Results:A total of 84 preterm infants with positive blood cultures for late-onset sepsis were identified,comprising 31 cases of gram-negative bacilli sepsis and 53 cases of non-gram-negative bacilli sepsis.PSM was applied to the confounding factors in both groups,resulting in 29 successfully matched pairs.Nineteen clinical indicators were selected and modeled using SVM and LR,with SVM identifying 4 risk factors and LR identifying 3 risk factors.The SVM model demonstrated superiority over the LR model in terms of sensitivity,specificity,positive predictive value,negative predictive value,and AUC.Post-NRI calculation,the predictive ability of the SVM model was significantly higher than that of the LR model(P<0.05).Conclusion:The SVM model exhibits greater practical value than the LR model in the classification prediction of small sample sizes.White blood cell count,duration of central venous catheterization,pulse pressure,and C-reatative protein can be considered as viable risk factors for the early identification of late-onset sepsis caused by gram-negative bacteria in preterm infants.

support vector machineLogistic regressiongram-negative bacterialate-onset sepsispropensity score matchingpreterm infants

高正平、程序、寇晨

展开 >

首都医科大学附属北京妇产医院/北京妇幼保健院 新生儿科,北京 100026

支持向量机 Logistic回归 革兰阴性杆菌 晚发型败血症 倾向性评分匹配 早产儿

北京市医院管理中心"青苗"计划

QML20211403

2024

现代医学
东南大学

现代医学

CSTPCD
影响因子:0.703
ISSN:1671-7562
年,卷(期):2024.52(2)
  • 23