首页|基于改进蚁群算法的船舶路径规划算法与避碰仿真实验

基于改进蚁群算法的船舶路径规划算法与避碰仿真实验

扫码查看
近年来,船舶正逐渐向智能化和自主化方向发展,船舶路径规划作为实现船舶智能化的基础,已成为学术界的研究热点.蚁群算法作为最常用的元启发式算法之一,在解决路径规划问题上取得了不错的效果,但仍然存在若干缺陷.为解决蚁群算法实现船舶路径规划时存在的迭代速度慢、路径安全性较低等问题,采用启发式和融合式策略改进算法:在蚁群算法迭代初期,引入人工势场,提高算法迭代效率;将路径长度、路径安全性和路径平滑性约束函数融入信息素更新规则,保障船舶航行路径安全;构建混合蚁群静态路径规划算法,加入船舶避碰方法,搭建船舶动态路径规划算法.为验证路径规划算法的可行性和稳定性,设计各种仿真环境并进行了对比分析,结果表明,改进后的蚁群算法收敛速度快,且路径规划更加贴合实际.
Ship Path Planning and Collision Avoidance Based on Improved Ant Colony Algorithm
In recent years,ship is gradually developing in the direction of intelligence and autonomy.Meanwhile,ship path planning,as the basis for implementing ship intelligence,has become the hotspot of research in academia.Ant colony algorithm,as one of the most commonly used meta-heuristic algorithms,has achieved good results in path planning,but it still has some defects.To solve the problems of slow convergence speed and low path safety in implementing ship path planning using ant colony algorithm,heuristic and fusion strategies are adopted to improve the algorithm.By introducing artificial potential field,the efficiency of the algorithm is improved.The constraint functions of path length,path safety and path smoothness are integrated into the pheromone update rules to ensure the safety of the path.Static path planning algorithm based on hybrid ant colony is designed,and the ship collision avoidance process is added to construct the dynamic path planning algorithm.In order to verify the feasibility and effectiveness of the algorithm,various simulation environments are designed for comparative analysis.The results show that the improved ant colony algorithm has faster convergence speed,and the path planning is more practical.

ship path planningant colony algorithmartificial potential fieldship collision avoidance

王瑛、周毅、李萌、蒙学昊、孙冰、斯园园

展开 >

中海油能源发展股份有限公司采油服务分公司 天津 300452

船舶路径规划 蚁群算法 人工势场法 船舶避碰

2024

天津科技
天津科学技术信息研究所

天津科技

影响因子:0.253
ISSN:1006-8945
年,卷(期):2024.51(4)
  • 11