首页|基于Seq2Seq深度学习方法的气象预警纠错模型研究

基于Seq2Seq深度学习方法的气象预警纠错模型研究

扫码查看
针对全国气象预警信息发布语义类错误,研发一种预警信息纠错模型.通过建立全国气象历史预警信息语料库,训练基于Seq2Seq深度学习方法的纠错模型,并与基于统计方法的规则模型相互验证,形成预警预报信息合法性监测质控平台,构建"智能语义分析+人工验证"的质控业务流程,实现敏感词的快速定位与提醒.预警质控平台业务应用后,信息内容错情率较上一年降低 70%,语义纠错效果显著.
Research on Meteorological Early Warning Error Correction Model Based on Seq2Seq Deep Learning Method
An error correction model of early warning information is developed for semantic errors in the release of national meteorological early warning information.By establishing a national meteorological historical warning information corpus,training an error correction model based on Seq2Seq deep learning method,and verifying it with a rule model based on statistical methods,a quality control platform for monitoring the legitimacy of warning and forecasting information was formed.A quality control business process of"intelligent semantic analysis+manual verification"was constructed to achieve rapid localization and reminder of sensitive words.Since the early warning quality control platform began to be applied,the error rate of information content decreased by 70%compared with the previous year,and the semantic error correction effect was remarkable.

early warning releasesemantic analysisSeq2Seq deep learningearly warning legality monitoringquality control model

侯天宇、张珊、金峰、苑超、陈子煊

展开 >

天津市突发公共事件预警信息发布中心 天津 300300

天津市气象信息中心 天津 300074

预警发布 语义分析 Seq2Seq深度学习 预警合法性监测 质控模型

安全天津、科技惠民与可持续发展实验区建设科技专项

17ZXCXSF00060

2024

天津科技
天津科学技术信息研究所

天津科技

影响因子:0.253
ISSN:1006-8945
年,卷(期):2024.51(5)
  • 13