首页|基于GA_IPSO-SFLA-WNN模型的光伏阵列故障诊断研究

基于GA_IPSO-SFLA-WNN模型的光伏阵列故障诊断研究

扫码查看
为准确辨识光伏阵列的运行故障,该研究提出了一种基于遗传动惯量粒子群优化算法(genetic algorithm and improved particle swarm optimization,GA_IPSO)、混合蛙跳算法(shuffled frog leaping algorithm,SFLA)以及小波神经网络(wavelet neural network,WNN)相结合的故障诊断方法。首先建立了光伏组件的运行模型,提取了故障状态下光伏组件的运行数据;然后,搭建以WNN为基础的光伏故障诊断模型,针对WNN模型的参数初始值敏感且容易陷入局部极小值的问题,采取SFLA算法对初始值进行优化;为解决SFLA优化的WNN模型中不同子组个体差异大和移动步长随机性的问题,采取GA_IPS O求解最优个体和最佳步长。实验结果表明,该方法对5种光伏故障(开路、短路、阴影、老化和电势诱导衰减(potential induced degradation,PID))的平均识别准确率达到98。50%,相较改进前故障的准确率提升了 9。5%,在澳大利亚光伏数据集(DKASC)下优于误差反向传播(back propagation,BP)神经网络、极限学习机(extreme learning machine,ELM)和支持向量机(support vector machine,SVM)的分类效果。
Research on fault diagnosis of photovoltaic array based on GA_IPSO-SFLA-WNN model
In order to accurately identify the operation faults of the photovoltaic modules,a fault diagnosis method based on the combination of genetic algorithm and improved particle swarm optimization(GA_IPSO),shuffled frog leaping algorithm(SFLA)and wavelet neural network(WNN)was proposed.Firstly,the operation model of PV module is established,and the operation data of PV module under fault condition is extracted;Then,a photovoltaic fault diagnosis model based on WNN is built.Aiming at the problem that the initial value of WNN model parameters is sensitive and easy to fall into local minimum,SFLA is adopted to optimize the initial value;In order to solve the problems of large individual differences and randomness of moving steps in different subgroups of WNN model optimized by SFLA,GA_IPSO solves the optimal individual and optimal step size.The experimental results show that the average recognition accuracy of this method for five photovoltaic faults(open circuit,short circuit,shadow,aging and potential vector machine(PID)reaches 98.50%,which is 9.5%higher than that before the improvement,and is better than back propagation(BP),extreme learning machine(ELM)and support vector machine(SVM)in Australia photovoitaic data set.

photovoltaic arrayfault diagnosiswavelet neural networkshuffled frog leaping algorithmgenetic algorithm and improved particle swarm optimization algorithm

周文、高强、刘赫、毛泽民

展开 >

天津理工大学电气工程与自动化学院,天津 300384

天津金沃能源科技股份有限公司,天津 300000

天津理工大学聋人工学院,天津 300384

光伏阵列 故障诊断 小波神经网络 混合蛙跳算法 遗传动惯量粒子群算法

2025

天津理工大学学报
天津理工大学

天津理工大学学报

影响因子:0.307
ISSN:1673-095X
年,卷(期):2025.41(2)