首页|融合改进A*和蚁群算法的机器人路径规划

融合改进A*和蚁群算法的机器人路径规划

扫码查看
针对蚁群算法(ant colony optimization,ACO)在搜索前期导向性差、易陷入局部最优和路径不平滑等问题,提出了一种融合A*和改进蚁群的平滑路径规划算法。首先,通过A*算法对地图进行信息素浓度差异化处理,加快初期蚁群收敛速度;其次,通过将路径代价、转移角度和障碍物浓度3种影响因素引入传统启发函数,并将距离偏置函数融入转移概率以及动态调整启发因子权重,从多方面增强了 目标点对蚂蚁的吸引力;并利用一种奖惩机制对信息素进行更新处理,解决算法易局部最优的问题;最后引入三次B样条对路径进行拐角优化,改善路径平滑性。仿真实验结果表明,该算法在复杂环境下,具有良好的全局规划能力和鲁棒性。
Robot path planning incorporating improved A*and ant colony optimization
According to the problems of the ant colony optimization(ACO)algorithm,which suffers from poor guidance and easily falls into local optimums and unsmooth paths,a path planning algorithm is proposed by combining A*and an improved ant colony algorithm.Firstly,in order to improve the initial convergence speed of the ant colony,the A*algorithm is used to differentiate the pheromone concentration on the map.Secondly,by incorporating the three influencing factors-path cost,transition angle,and obstacle concentration,into the traditional heuristic function,integrating the distance offset function into the transition probability,and dynamically adjusting the weight of the heuristic factor,the attractiveness of the target point to the ant is enhanced in many ways.Furthermore,a reward and punishment mechanism is used to update the pheromone levels and address the issue of the local optimality.Finally,the cubic B-spline is introduced to optimize the path corners and improve the path smoothness.The simulation results show that this algorithm has good global planning ability and robustness in complex environments.

path planningant colony algorithmreward and punishment mechanismglobal planning

倪建云、吴杰、薛晨阳、谷海青

展开 >

天津理工大学电气工程与自动化学院,天津 300384

路径规划 蚁群算法 奖惩机制 全局规划

2025

天津理工大学学报
天津理工大学

天津理工大学学报

影响因子:0.307
ISSN:1673-095X
年,卷(期):2025.41(2)