首页|基于模糊神经网络滑模变结构的供暖室温控制研究

基于模糊神经网络滑模变结构的供暖室温控制研究

扫码查看
针对供热室温控制系统大惯性、滞后性、时变性的情况,传统比例积分微分(proportion integration differentiation,PID)控制系统存在响应滞后性强、控制参数整定困难等问题,由此提出一种模糊神经网络滑模控制(fuzzy neural network sliding mode control,FNNSMC)算法。根据室温控制的特点,采用滑模变结构控制与模糊神经网络相结合的调节方式,实现对室温的智能控制。根据供热室温温度偏差及其变化率实时对滑模控制的参数进行在线优化整定,进而实现模糊神经网络滑模控制的自整定和智能化控制。进行MatLab/Simulink仿真实验,根据模糊滑模与模糊神经网络滑模响应曲线的比较,表明控制系统采用模糊神经网络滑模算法具有更好的性能,满足了控制系统的稳定性、快速性的要求。在面对突加的外部扰动时,控制系统具有良好的抗干扰能力。
Research on heating room temperature control based on fuzzy neural network sliding mode variable structure
In the view of the large inertia,hysteresis and time-varying of the heating room temperature control system,the traditional PID control system has strong response hysteresis and difficult in the control parameter adjustment,thus a fuzzy neural network sliding mode control algorithm is proposed.According to the characteristics of room temperature control,a combination of sliding mode variable structure control and fuzzy neural network is used to realize the intelligent control of room temperature.The parameters of the sliding mode control are optimally adjusted online in real time according to the deviation of the heating room temperature and its change rate,thus realizing the self-tuning and intelligent control of the fuzzy neural network sliding mode control.Based on the comparison of the sliding mode response curves of fuzzy sliding mode and fuzzy neural network,it is shown that the sliding mode algorithm of fuzzy neural network has better performance and meets the requirements of stability and rapidity of the control system.The control system has good anti-interference capability in the face of sudden added external disturbances.

sliding mode variable structure controlfuzzy controlneural network controlfuzzy neural network controlheating room temperature control

徐智宏、马旭、刘鹏程、邢少松、李浩

展开 >

天津理工大学电气工程与自动化学院 天津 300384

滑模变结构控制 模糊控制 神经网络控制 模糊神经网络控制 供暖室温控制

2025

天津理工大学学报
天津理工大学

天津理工大学学报

影响因子:0.307
ISSN:1673-095X
年,卷(期):2025.41(2)