首页|面向非结构化道路的可行驶区域语义分割

面向非结构化道路的可行驶区域语义分割

扫码查看
准确识别非结构化道路可行驶区域可为军用智能车辆无人作战局部自主决策及路径规划提供理论依据。针对非结构化道路边缘模糊、特征相似等特点,现有的分割算法难以满足军用智能车辆对其准确性识别的问题,文中提出了一种面向非结构化道路的可行驶区域语义分割算法(attention Transformer DeepLabv3+,ATD)。在编码特征提取中级联了卷积注意力(convolutional block attention module,CBAM)模块,在不损失语义分割识别精度的前提下,增强了语义信息在不同通道和空间维度的 自适应像素权重,强化了复杂环境下的特征编码能力。在解码中引入了Transformer多头注意力(multi-head attention),加强了空间位置信息的关联性,实现了非结构化道路边缘的细粒度化推理。基于自建的约6 000张非结构化道路数据集进行对比实验,实验结果表明,较对比网络模型准确率平均提高了5。65%,交并比平均提高了 4。20%。
Semantic segmentation of drivable region for unstructured roads
Accurate identification of the unstructured road driving regions can provide theoretical basis for local autonomous decision-making and route planning of unmanned combat for military intelligent vehicles.In view of the fuzzy edges and similar features of the unstructured roads,existing segmentation algorithms are difficult to meet the requirements of the military intelligent vehicles'accuracy recognition.In this paper,attention Transformer DeepLabv3+(ATD),a semantic segmentation algorithm for driving area oriented to unstructured roads,is proposed.Convolutional Block Attention Module(CBAM)module cascaded in coded feature extraction,which enhances the adaptive pixel weights of semantic information in different channels and spatial dimensions and strengthens the feature coding ability in complex environments without losing the accuracy of the semantic segmentation and recognition.The introduction of Transformer Multi-Head Attention in decoding to strengthen the relevance of spatial location information and realize the fine-grained reasoning of unstructured road edges.Based on about 6 000 unstructured road data sets built by ourselves,the experimental results show that MPA and MIoU are improved by 5.65%and 4.20%on average compared with the network model.

unstructured roadsemantic segmentationconvolutional block attention moduleTransformerDeepLabv3+

朱俊涛、刘佳琦、杨璐

展开 >

天津理工大学天津市先进机电系统设计与智能控制重点实验室,天津 300384

天津理工大学机电工程国家级实验教学示范中心,天津 300384

非结构化道路 语义分割 卷积注意力 Transformer DeepLabv3+

2025

天津理工大学学报
天津理工大学

天津理工大学学报

影响因子:0.307
ISSN:1673-095X
年,卷(期):2025.41(2)