首页|多弹集群协同优化决策算法研究

多弹集群协同优化决策算法研究

Research on Collaborative Optimization Decision Algorithm for Multi-Missile Clusters

扫码查看
本文以集群对海作战为应用背景,为重点解决多弹多空间散布的时空构型及目标分配决策问题,建立了多弹典型协同场景下的导弹主动感知协同探测模型,设计了导弹协同探测与协同攻击的模型以及相应的算法.首先,建立了导弹三自由度和舰船二自由度模型、导弹飞行能力评估模型、导弹突防概率评估模型和导弹威胁度评估模型,使得对导弹执行探测和打击任务中能力的变化度量更加精确.其次,设计导弹在不完全信息条件下的主动感知协同探测模型和协同攻击模型,保证导弹协同作战的效益最大化,最大限度地打击敌方势力.再次,针对导弹协同打击目标分配和导弹编队构型问题,使用融合了遗传算法的粒子群(GAPSO)算法问题进行求解,并与传统的粒子群(PSO)算法进行了对比,实现了多方位考虑战场态势信息,对敌方目标进行探测攻击一体化打击.最后,对建立的作战模型进行仿真,得到算法仿真图和算法多次仿真的统计数据.相比其他算法,该算法具有一定的优越性,大幅提升了导弹的智能化对抗水平和突防打击能力.
Taking cluster-to-sea combat as the application background,this article focuses on the spatiotemporal configuration and target allocation decision-making problems of multi-missile and multi-spatial dispersion.It established a missile active perception collaborative detection model in typical collaborative scenarios of multiple missiles and designed models and corresponding algorithms for missile cooperative detection and collaborative attacks.Initially,a three-degree-freedom model for missiles and a two-degree-freedom model for ships,an evaluation model for missile flight capability,an evaluation model for missile penetration probability,and a missile threat evaluation model were established,thus allowing the accurate measurements of changes in missile detection and strike capabilities.Then,this study designed an active perception collaborative detection model and collaborative attack model for missiles under incomplete information conditions,maximizing the benefits of missile collaborative operations and maximizing the destruction of enemy forces.After that,to address the problems of target allocation and missile formation configuration in missile coordinated strike,a particle swarm optimization algorithm incorporating a genetic algorithms(GAPSO)was introduced and compared with the traditional particle swarm optimization(PSO)algorithms,which allows a multi-dimensional consideration of battlefield situation information and integrated detection and attack of enemy targets.Finally,this article simulated the established combat model and obtained algorithm simulation graphs and statistical data from multiple simulations of the algorithm.Compared with other algorithms,this algorithm has obvious advantages,thus significantly improving the intelligent confrontation level and penetration strike ability of missiles.

missile cluster decision-makingmulti-missile cooperationactive perceptionparticle swarm optimization(PSO)genetic algorithms particle swarm optimization(GAPSO)

熊婧伊、呼卫军、殷玮、张伟杰、颜涛

展开 >

西北工业大学 航天学院,陕西 西安 710072

上海机电工程研究所,上海 201109

导弹集群决策 多弹协同 主动感知 粒子群 遗传粒子群

2024

空天防御
上海机电工程研究所和上海交通大学出版社有限公司

空天防御

ISSN:2096-4641
年,卷(期):2024.7(3)