在HBIM(Historic Building Information Modeling)数据库中进行信息查询面临三个问题:一是没有普适性的规则判断建筑之间的相似性;二是未考虑建筑本身所包含的历史文化信息;三是查询文本多基于关键词,难以检索到关键词未包含的信息.针对以上问题,提出了一种面向历史建筑的多模态检索方法,用户能通过输入图像或自然语言文本数据,检索到与输入特征相符的建筑,并以列表形式进行排序.在以图像检索建筑时,利用"dino_vit16"模型对图像进行特征提取,所提出的图像-建筑检索方法检索精度达90.08%;在文本检索建筑时则基于CLIP(Contrastive Language-Image Pre-training)模型建立图像和文本的关联,研究了图文相似度和文本相似度权重的取值,选择m=0.6,n=0.4作为权重的最佳配置.实验证明所提出的文本-建筑检索算法对于包含某种外观特征查询语句的检索效果最好,对于描述某种功能和建筑风格的查询语句检索效果最差,而当查询语句中包含4个以上的混合特征,能够描述出建筑的基本面貌时,可以准确地检索到符合条件的建筑.
Research on Multimodal Retrieval Methods for Historical Buildings
The retrieval of historical buildings in HBIM database faces three main issues:1)the absence of universal rules for determining the similarity between buildings;2)the neglect of historical and cultural information inherent to the buildings themselves;3)most queries rely on keywords,which imposes limitations of available information.Addressing these challenges,this paper introduces a multimodal retrieval approach for historical buildings.Users can retrieve a list of buildings matching their input features,whether through images or natural language text data.For image-based building retrieval,the"dino_vit16"model is employed for feature extraction,achieving a retrieval accuracy of 90.08%with the proposed image-building retrieval method.For text-based building retrieval,a connection between images and text is established through the CLIP model.The study explores the values of image-text similarity and text similarity weights,selecting m=0.6 and n=0.4 as the optimal configuration for these weights.Experimental results have shown that the proposed text-based architectural retrieval algorithm performs best when the query statement contains a specific visual feature,and it performs worst when the query statement describes a particular function and architectural style.However,when the query statement includes four or more mixed features that accurately describe the fundamental appearance of a building,it can accurately retrieve buildings that meet the criteria.
Historical BuildingHistorical Building Information Modeling(HBIM)Vision Transformer(ViT)Similarity MeasurementMultimodal Retrieval