首页|基于SHAW模型的北疆地区不同滴灌年限棉田冻融期土壤水热盐动态模拟研究

基于SHAW模型的北疆地区不同滴灌年限棉田冻融期土壤水热盐动态模拟研究

扫码查看
为探究SHAW(Simultaneous heat and water)模型在北疆地区长期膜下滴灌棉田冻融期土壤水热盐动态模拟的适用性,本研究选用滴灌起始年限为 1998 年(21 a)的棉田土壤水热盐实测数据对SHAW模型进行率定,以滴灌起始年限为 2006 年(13 a)、2008年(11 a)、2012年(7 a)和荒地(0 a)的水热盐实测数据进行验证。模型率定结果表明,随土壤深度增加土壤温度的模拟效果越好;土壤水盐的模拟效果先增强后减弱。模拟土壤温度Nash系数(NSE)、均方根误差(RMSE)和R2分别为0。713~0。993、0。209~2。498℃和0。911~0。994;模拟土壤水分NSE和RMSE分别为0。824~0。967和0。009%~0。032%;模拟土壤盐分NSE和RMSE分别为0。609~0。844和0。001~0。012 g/kg。模型验证结果表明,随滴灌年限增加模拟效果越好,模拟除荒地20~60 cm土层土壤温度NSE小于0。600,滴灌7、11和13 a地块各层土壤温度NSE均大于0。600,RMSE介于0。143~3。213℃;滴灌0、7、11和13 a地块模拟的各层土壤水分NSE均大于0。670,RMSE为0。009%~0。057%;滴灌0、7、11和13 a地块模拟的除120~140 cm土层土壤盐分NSE小于0。600,其他各层土壤盐分NSE均大于0。616,RMSE为0。000~0。016 g/kg。总体而言,SHAW模型适用于北疆地区冻融期长期膜下滴灌棉田的一维土壤水热盐模拟。
Dynamic Simulation of Soil Water,Heat and Salt in Freeze-thaw Stage of Cotton Field with Different Mulched Drip Irrigation Years in Northern Xinjiang Based on SHAW Model
In order to investigate the applicability of the SHAW(Simultaneous heat and water)model in simulating soil hydrothermal and salinity dynamics during freeze-thaw period in long-term drip-irrigated cotton fields in the Northern Xinjiang region,the measured soil data of cotton fields with the starting year of 1998(21 a)for drip irrigation were used to calibrate SHAW model in this study.SHAW model was validated with the data from drip irrigation start years of 2006(13 a),2008(11 a),2012(7 a),and barren land(0 a).The results showed that,with the increasing soil depth,the simulation accuracy of soil temperature was better,and the simulation accuracy of soil water salinity was enhanced and then weakened.Nash coefficient(NSE),root-mean-square error(RMSE)and R2 of simulated soil temperature were 0.713-0.993,0.209-2.498 ℃ and 0.911-0.994,respectively.NSE and RMSE of simulated soil moisture were 0.824-0.967 and 0.009%-0.032%,respectively,and NSE and RMSE of simulated soil salinity were 0.609-0.844 and 0.001-0.012 g/kg,respectively.The results of model validation showed that the simulation accuracy was better with the increase in the number of years of drip irrigation,and NSE of simulated soil temperature was greater than 0.600 and RMSE ranged from 0.143 to 3.213℃in all layers of the drip-irrigated plots of 7,11 and 13 a,except that NSE of soil temperature in the soil layer of 20-60 cm in the barren land was less than 0.600.NSE of soil moisture was greater than 0.670 and RMSE ranged from 0.009%to 0.057%in all soil layers of simulated drip irrigated plots for 0,7,11 and 13 a.NSE of soil salinity for 0,7,11 and 13 a were greater than 0.616 and RMSE ranged from 0.000 to 0.016 g/kg in all soil layers,except for the120-140 cm soil layer with NSE less than 0.600.Overall,SHAW model is an available tool to simulate the soil water,heat,and salt in cotton fields under long-term mulched drip irrigation during the freezing and thawing period in Northern Xinjiang.

SHAW modelFreeze-thaw periodMulched drip irrigationCotton fieldSoil water,heat,and salt

赵露、叶含春、王振华、刘健、吝海霞、邹杰、谭明东

展开 >

石河子大学水利建筑工程学院,新疆石河子 832000

现代节水灌溉兵团重点实验室,新疆石河子 832000

农业农村部西北绿洲节水农业重点实验室,新疆石河子 832000

SHAW模型 冻融期 膜下滴灌 棉田 土壤水热盐

兵团重大科技项目国家自然科学基金项目国家自然科学基金项目

2021AA003-15227904052169012

2024

土壤
中国科学院南京土壤研究所

土壤

CSTPCD北大核心
影响因子:1.052
ISSN:0253-9829
年,卷(期):2024.56(3)