首页|基于辅助变量的紫色土耕地土壤有机质空间预测

基于辅助变量的紫色土耕地土壤有机质空间预测

扫码查看
研究收集了川中丘陵区域紫色土耕地共135个土壤样本,基于GEE(Google Earth Engine)云平台调用高分辨率Sentinel-2A数据、SRTMGL1v3。0高程数据、SoilGrids 土壤属性数据,并创新性地加入了纹理特征作为辅助变量,分别通过梯度提升决策树(GBDT)和随机森林(RF)构建两种预测模型反演研究区土壤有机质。结果表明:研究区内紫色土耕地土壤有机质含量偏低,养分级别为二~六级;GBDT算法构建的模型相比于RF算法预测精度更高,R2、r、RMSE分别为0。687、0。829、5。668 g/kg和0。514、0。717、6。765 g/kg;加入纹理特征的模型R2分别增加了 6。80%和1。70%,为土壤有机质预测研究提供了新的思路。
Soil Organic Matter Prediction of Purple Soil Based on Auxiliary Variables
This study collected a total of 135 samples from purple soil farmlands in the hilly region of central Sichuan.Based on the GEE cloud platform,high-resolution Sentinel-2A data,SRTMGLlv3.0 elevation data,and SoilGrids soil attribute data were invoked,and texture feature data was innovatively added.Two prediction models were constructed by using gradient enhancement decision tree(GBDT)and random forest(RF)to invert SOM.The results showed that SOM content of purple soil farmlands in the study area was relatively low,with the level ranging from 2 to 6 levels.The models constructed by GBDT algorithm had higher prediction accuracy(R2=0.687,r=0.829,RMSE=5.668 g/kg)compared to RF algorithm(R2=0.514,r=0.717,RMSE=6.765 g/kg).The R2 with texture features increased by 6.80%and 1.70%,respectively.TGIS study can provide a new scientific approach for SOM prediction.

Soil organic matterMachine learningPurple soilGEE

刘雅璇、于慧、罗勇

展开 >

中国科学院·水利部成都山地灾害与环境研究所,成都 610299

昆明理工大学国土资源工程学院,昆明 650093

成都理工大学地理与规划学院,成都 610059

土壤有机质 机器学习 紫色土 GEE

国家自然科学基金项目四川省地质调查研究院财政资金项目

41971273SCIGS-CZDXM-2024014

2024

土壤
中国科学院南京土壤研究所

土壤

CSTPCD北大核心
影响因子:1.052
ISSN:0253-9829
年,卷(期):2024.56(4)