首页|基于机器学习和土壤关键要素的烤烟品质数字制图——以云南玉溪烟区为例

基于机器学习和土壤关键要素的烤烟品质数字制图——以云南玉溪烟区为例

扫码查看
以中国典型烟区云南玉溪烟区为研究对象,基于156个土壤-烤烟品质等级配对数据集,通过主成分分析法筛选土壤关键要素,应用反向神经网络(BPNN)、随机森林(RF)和支持向量机(SVM)3种机器学习方法,构建了基于土壤关键要素的烤烟品质等级预测模型,实现了玉溪市烤烟品质等级空间预测与制图。研究结果表明:基于17个土壤指标筛选出11个指标作为土壤关键要素,其中土壤黏粒含量对烤烟品质等级的贡献率最大,为18。5%。独立验证结果显示,RF模型的准确率和Kappa系数最高,分别为0。78和0。76,预测效果最好,其次是SVM模型,BPNN模型最差。从召回率和精确率来看,RF模型对烤烟品质等级正确分级效果的程度为五档>一档>二档。一档、五档烤烟主要集中分布在玉溪市东部,最东部的华宁县是玉溪市最优质的烤烟作物产地。
Digital Mapping of Flue-Cured Tobacco Quality Based on Machine Learning and Soil Key Elements—A Case Study of Yuxi Tobacco Area in Yunnan Province,China
In this study,Yuxi City of Yunnan Province,a typical tobacco-planting area in China,was selected as the study object,based on a dataset consisting of 156 pairs of soil-tobacco quality grades,soil key elements were identified through principal component analysis,and then three machine learning methods,namely the Back Propagation Neural Network(BPNN),Random Forest(RF)and Support Vector Machine(SVM)were employed to construct the prediction model of tobacco quality grade in order to achieve its spatial prediction and mapping.The results showed that based on 17 soil indicators,11 specific indicators were identified as soil key elements,among these,clay content exhibited the highest contribution(accounting for 18.5%)to the variation in tobacco quality grades.The independent validation demonstrated that RF model achieved the highest accuracy(0.78)and Kappa coefficient(0.76)in the predictive performance,followed by SVM model,while BPNN model exhibited the least favorable outcomes.In terms of recall and precision,RF model demonstrated a descending level of accuracy in correctly categorizing tobacco quality grades,with the order of Level 5>Level 1>Level 2.Tobacco quality of Level 1 and 5 were predominantly distributed in the eastern part of Yuxi,with the easternmost Huanning County being the prime cultivation area for high-quality tobacco.

Tobacco qualityMachine learningSoil key elementsSpatial distributionMapping

陶怡、王美艳、史学正、孙维侠、王世航、李湘伟、朱云聪、谢新乔

展开 >

中国科学院南京土壤研究所,南京 211135

安徽理工大学空间信息与测绘工程学院,安徽淮南 232001

红塔烟草(集团)有限责任公司,云南玉溪 653100

烤烟品质 机器学习 土壤关键要素 空间分布 制图

红塔烟草(集团)有限责任公司科技项目

KY-Y60023015

2024

土壤
中国科学院南京土壤研究所

土壤

CSTPCD北大核心
影响因子:1.052
ISSN:0253-9829
年,卷(期):2024.56(4)