首页|基于遗传算法和BP神经网络的矿区土壤重金属含量空间分布预测

基于遗传算法和BP神经网络的矿区土壤重金属含量空间分布预测

扫码查看
本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型—GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中pH和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As)含量的空间分布,并与BPNN和反比距离权重法(Inverse distance weighting,IDW)进行了比较。研究结果表明:受采矿活动影响,研究区土壤pH和重金属含量呈显著的空间分异性;GABP复合模型的数据扩增能够有效弥补BPNN对样本数量的依赖,同时结合了地理位置和高程属性,精度评价结果显示GABP模型的平均R2、r、RMSE、MAE分别是IDW和BPNN的3。03倍、2。56倍,2。93倍、2。39倍,0。85倍、0。61倍,0。79倍、0。62倍,预测精度更高。模型解决了传统空间插值方法结果中可能出现负值和边界无法插值的问题,为土壤重金属含量空间分布预测提供了一种新方法。
Prediction of Spatial Distribution of Soil Heavy Metal Contents in Mining Areas Based on Genetic Algorithm and BP Neural Network
Based on genetic algorithm(GA)and back propagation neural network(BPNN),this study proposed a composite model:GABP model.Focusing on a mining area and its surroundings in Chizhou City,Anhui Province,the spatial distribution of soil pH value and the concentrations of seven heavy metals(Cd,Pb,Cr,Cu,Ni,Hg and As)were predicted by GABP model,and the prediction results were compared with those of BPNN and inverse distance weighting(IDW)method.The results showed that,influenced by mining activities,there was significant spatial heterogeneity in soil pH value and heavy metal concentrations in the study area.The data augmentation of GABP model effectively compensated for the dependency of BPNN on the sample size,and simultaneously incorporated geographical location and elevation attributes.The precision evaluation results indicated that the average R2,r,RMSE and MAE of GABP model was 3.03 times and 2.56 times,2.93 times and 2.39 times,0.85 times and 0.61 times,0.79 times and 0.62 times higher than those of IDW and BPNN,respectively,indicating a higher predictive accuracy.The proposed model can solve the issues in traditional spatial interpolation methods where negative values and boundary interpolation difficulties may occur,and provides a novel approach for predicting the spatial distribution of soil heavy metal contents.

Genetic algorithmBP neural networkGABP modelSpatial distribution predictionHeavy metal content

赵萍、阮旭东、刘亚风、赵思逸、孙雨、常杰、周俊

展开 >

合肥工业大学资源与环境工程学院,合肥 230009

安庆师范大学资源环境学院,安徽安庆 246133

遗传算法 BP神经网络 GABP模型 空间分布预测 重金属含量

国家自然科学基金项目

41972304

2024

土壤
中国科学院南京土壤研究所

土壤

CSTPCD北大核心
影响因子:1.052
ISSN:0253-9829
年,卷(期):2024.56(4)