首页|隧道内埋地掺氢天然气管道泄漏扩散研究

隧道内埋地掺氢天然气管道泄漏扩散研究

扫码查看
氢能作为一种理想的清洁能源备受青睐,将氢气掺入到天然气管道中是实现氢能大规模输送的有效途径。在输送过程中,管道一旦发生泄漏便会严重影响管道的安全运行,目前隧道内埋地掺氢天然气管道的泄漏扩散规律尚不明确。建立了隧道内埋地掺氢天然气管道泄漏扩散数值模型,探究了掺氢比(体积分数)、泄漏孔径和来流风速对混合气体泄漏扩散特性的影响。结果表明,掺氢天然气泄漏后在隧道顶部大量积聚,呈现出中心区域浓度高、边缘区域浓度低的现象。随着掺氢比增大,混合气体爆炸下限降低,相同时间内的泄漏量增多。因隧道空间密闭,混合气体在短时间内不能充分扩散,因此掺氢比越大,爆炸危险区域越大,达到爆炸极限的时间越短。当掺氢比由5%增加到20%时,爆炸危险区域增加了3。18%,混合气体达到爆炸极限的时间缩短了3。7%。泄漏孔径越大,混合气体泄漏量越大,爆炸危险区域越大,混合气体达到爆炸极限的时间越短。当泄漏孔径由20 mm增大至100 mm时,沿隧道径向的爆炸危险区域由距地面1。49m减小至0。30 m,轴向爆炸危险区域由13。4 m增大至91。9m,达到爆炸极限的时间由95。2 s缩短至11。3 s。来流风速的平流输送作用促进了混合气体沿隧道轴向的扩散,缩小了隧道顶部的高浓度区域,爆炸危险区域显著缩小。当来流风速由0。5 m/s增大至2。0 m/s时,爆炸危险区域缩小了81。7%。因此,隧道内气体发生泄漏时应及时通风,避免燃烧爆炸等事故的发生。该研究结果可为隧道内埋地掺氢天然气管道的安全运行提供理论依据。
Study on leakage and diffusion of hydrogen-doped natural gas buried pipelines in tunnels
Hydrogen energy is favored as an ideal clean energy source,and doping hydrogen into natural gas pipelines is an effective way to realize large-scale delivery of hydrogen energy.Once pipelines leaking during transportation,the safe operation of pipelines will be seriously affected.At present,the leakage and diffusion law of hydrogen-doped natural gas buried pipelines in tunnels is not clear.A numerical model of leakage and diffusion for hydrogen-doped natural gas buried pipelines in tunnels was established to study the effects on hydrogen doping ratio(volume fraction),leakage aperture and incoming wind speed of leakage and diffusion characteristics of the gas mixture.The results show that hydrogen-doped natural gas accumulates at the top of tunnel after leaking,showing the phenomenon of high concentration in the center area and low concentration in the edge area.With the increase of hydrogen doping ratio,the lower explosion limit of the gas mixture decreases,and the leakage volume increases.Due to the confined space of tunnel,the gas mixture can not be fully diffused in a short period of time,so the larger the hydrogen doping ratio,the larger the explosion area,and the shorter the time to reach explosion limit.When hydrogen doping ratio increases from 5%to 20%,the explosion danger area increases by 3.18%,the gas to reach explosion limit time decreases by 3.7%.As the leakage aperture increases,the leakage amount of the mixed gas increases,the explosion danger area increases,and the time for the mixed gas to reach the explosion limit decreases.When leakage aperture increases from 20 mm to 100 mm,the distance from ground to the explosion danger area in the radial direction of tunnel decreases from 1.49 m to 0.30 m,the axial explosion danger area increases from 13.4 m to 91.9 m,and the time for gas to reach explosion limit decreases from 95.2 s to 11.3 s.The advection transport effect of incoming wind speed promotes the diffusion of mixed gas along axial direction of tunnel,reduces the high concentration area at the top of tunnel,and makes the explosion danger area significantly smaller.When incoming wind speed increases from 0.5 m/s to 2.0 m/s,the explosion danger area decreases by 81.7%.Therefore,tunnels should be ventilated in time when gas leakage occurs to avoid the occurrence of combustion and explosion.The results of this study can provide a theoretical basis for the safe operation of hydrogen-doped natural gas buried pipelines.

numerical simulationhydrogen-doped natural gas buried pipelinesleakage and diffusionhydrogen doping ratioexplosion limit

袁巧玲、周诗岽、吴文景、吕孝飞

展开 >

常州大学石油与天然气工程学院,油气与新能源储运技术省高校重点实验室,江苏常州 213016

数值模拟 埋地掺氢天然气管道 泄漏扩散 掺氢比 爆炸极限

江苏省碳达峰碳中和科技创新专项

BE2022001-5

2024

天然气化工—C1化学与化工
西南化工研究设计院有限公司 全国天然气化工与碳一化工信息中心

天然气化工—C1化学与化工

CSTPCD北大核心
影响因子:0.814
ISSN:1001-9219
年,卷(期):2024.49(9)