首页|超重力反应器天然气脱碳过程反应传质智能预测

超重力反应器天然气脱碳过程反应传质智能预测

扫码查看
超重力反应器具有优异的传质性能,在天然气脱碳领域具有广阔的应用前景。为了有效预测超重力反应器的天然气脱碳性能,首先搭建了一套超重力反应器天然气脱碳实验系统,考察了超重力因子、吸收液喷淋密度、混合气体积流量和进气组成等运行参数对模拟天然气脱碳效果的影响;然后采用无量纲方法建立了运行参数与传质系数之间的映射关系;最后基于最小二乘支持向量机(LSSVM)算法,建立了智能预测模型。结果表明,超重力因子和吸收液喷淋密度均存在最优值,分别为57。62和2。04 m3/(m2·h)。增大混合气体积流量,CO2脱除效果下降,但传质系数增大。在最优模型参数([γ,t,d]=[13557。2021,9。5876,4])下,智能预测模型预测结果的决定系数(R2)和平均相对误差(MRE)分别为0。9519和0。0949,预测结果的相对误差在±20%以内,说明智能预测模型具有较高的准确性。
Intelligent prediction of mass transfer during natural gas decarburization in high gravity reactor
The high-gravity reactor has excellent mass transfer performance and has broad application prospects in the field of natural gas decarbonization.In order to effectively predict the natural gas decarburization performance of the high-gravity reactor,a set of natural gas decarburization experimental system based on high-gravity reactor was built,and the influences of operating parameters(high gravity factor,spray density of absorbent,mixture volume flow rate and intake composition,etc)on the CO2 removal performance were investigated.Then a dimensionless method was adopted to establish the mapping relationship between operating parameters and mass transfer coefficient.Finally,based on the least square support vector machine(LSSVM)algorithm,the intelligent prediction model was established.The results show that both the high gravity factor and absorbent spray density have optimal values,which are 57.62 and 2.04 m3/(m2·h),respectively.In addition,it is found that the CO2 removal effect decreases while the mass transfer coefficient increases with the increases of mixture volume flow rate.Under the condition of optimal model parameter([γ,t,d]=[13557.2021,9.5876,4]),the determination coefficient(R2)and average relative error(MRE)of prediction results of intelligent prediction model are 0.9519 and 0.0949,respectively,and the relative error of prediction results is within±20%.It demonstrates that the intelligent prediction model has high accuracy.

high gravity reactornatural gas decarburizationLSSVM algorithmmass transferintelligent prediction model

张威、张伟文、李欣洋、傅程、黄斌、李玉星

展开 >

重庆科技大学 石油与天然气工程学院,重庆 401331

中国石油大庆油田有限责任公司第三采油厂,黑龙江 大庆 163000

青岛能源设计研究院有限公司,山东 青岛 266000

重庆科技大学 非常规油气开发研究院,重庆 401331

中国石油大学(华东)储运与建筑工程学院,山东 青岛 266580

展开 >

超重力反应器 天然气脱碳 LSSVM算法 传质 智能预测模型

2024

天然气化工—C1化学与化工
西南化工研究设计院有限公司 全国天然气化工与碳一化工信息中心

天然气化工—C1化学与化工

CSTPCD北大核心
影响因子:0.814
ISSN:1001-9219
年,卷(期):2024.49(12)