首页|基于CNN-LSTM-ATT网络的页岩气井产量预测

基于CNN-LSTM-ATT网络的页岩气井产量预测

扫码查看
页岩气作为一种重要的能源资源,是我国天然气产量增长的主力军之一,精准预测气井产量对于合理规划页岩气的开采与利用至关重要.为了解决页岩气产量影响因素复杂、具有动态变化性等预测难点,提高页岩气井产量预测精度,通过对生产维度进行相关性分析,选择油压、套压、产水量作为自变量,产气量为因变量输入预测模型,构建了一种复合神经网络CNN-LSTM-ATT,进行多变量产量预测研究.该模型中CNN用于从生产数据中提取特征,融合Attention机制强化特征对输入效果的重要性,LSTM擅长处理时间序列数据的学习.研究结果表明:①通过相关性分析,可以筛选出对产量预测影响较大的生产维度,对后续预测有重要意义;②通过复合神经网络模型对产气量进行多变量预测分析,能较好预测未来一段时间的页岩气井产量变化趋势;③复合模型的预测效果比单一神经网络更佳.结论认为,构建的模型具有良好的适用性,能够提高气井产量的预测精度,预测结果有较高的合理性,对页岩气开发具有借鉴指导作用.
Predicting the production in shale gas wells based on CNN-LSTM-ATT model
As a kind of considerable energy resources,shale gas is one of principal forces in production growth of natural gas in China.To predict its production accurately is crucial to the rational planning of shale gas utilization.Thus,correla-tion analysis on production dimension was implemented in an effort to solve a difficulty in this prediction,such as complex influential factors with dynamic changes,and further to improve forecast accuracy.The tubing pressure,casing pressure and water production as independent variables together with the gas production as an dependent variable were put into one prediction model.Then,a combined CNN-LSTM-ATT(convolutional neural network-long short-term memory-attention mechanism)model was constructed for multi-variable prediction.In this model,CNN is used to extract characteristics from production data,ATT enhances the importance of characteristics to input effect,and LSTM is good at learning how to deal with time series data.Results show that(ⅰ)the correlation analysis can screen out the dimension affecting intensely the pro-duction prediction,which is also of great significance to subsequent prediction;(ⅱ)the multi-variable prediction through the combined neural network model can better forecast the next production trend for shale gas wells;and(ⅲ)better predic-tion effect has been obtained from this combined model than that from single neural network.In conclusion,with good ap-plicability,the constructed model can increase the prediction accuracy on shale gas production and offer more reasonable prediction,which is meaningful to guide shale gas development.

Shale gasProduction predictionConvolutional neural networkLong short-term memoryAttention mechanism

付钰绮、王杨、吴思樵、熊川

展开 >

西南石油大学计算机与软件学院,四川 成都 610500

中国石油西南油气田公司川西北气矿,四川 江油 621000

中国石油西南油气田公司川中油气矿,四川 遂宁 629000

页岩气 产量预测 卷积神经网络 长短期记忆网络 注意力机制

2024

天然气技术与经济
中国石油西南油气田公司

天然气技术与经济

影响因子:0.459
ISSN:2095-1132
年,卷(期):2024.18(2)
  • 23