Responses of Soil BTEX Fluxes to Simulated Nitrogen Deposition in Two Dominated Forests of Dinghushan, China
BTEX are known as a type of volatile organic compounds (VOCs), which involve in atmospheric photochemical process and pose threats to human health and environment. Soil can act as both source and sink for BTEX. Increasing nitrogen deposition may influence soil ecological processes leading to changes in soil BTEX fluxes. Although nitrogen deposition has received much attention, the research on soil BTEX fluxes impacted by nitrogen deposition is still scarce. In this study, employing the static-chamber coupled with preconcentrator-GC-MS techniques, the responses of soil BTEX fluxes to simulated elevated nitrogen deposition were studied in two dominated forests, namely, pine forest (PF) and monsoon evergreen broadleaf forest (BF) in Dinghushan. The results showed that PF soil acted as sink for BTEX in the controlled sites, with the maximum uptake rate of (-51.52±10.94) pmol·m-2·s-1 for ethyl benzene. BTEX uptake rates decreased with low nitrogen additions and the soil function changed from “sink” to “source” with medium nitrogen additions in PF. In BF, meanwhile, soil acted as source for BTEX in controlled sites, with the maximum emission rate of (7.11±0.12) pmol·m-2·s-1for toluene. BTEX emission rates decreased, or the soil changed the function from “source” to “sink” after the nitrogen additions in BF, with the significant difference in low and high nitrogen addition sites from those in controlled sites. In addition, significantly high correlation coefficients were observed between toluene and ethyl benzene, xylene in PF soil as well as between benzene and toluene, xylene in BF soil with nitrogen treated. On the basis of measurements every 3 h each day for controlled and high nitrogen addition sites in BF, no clear diurnal variations were found for BTEX fluxes. The highest emission rates appeared at 7:00 in both sites and the highest uptake rates appeared at 19:00 and 13:00 in the controlled site and high nitrogen addition site, respectively. Soil CO2 emission rates (29.46±3.27) mg·m-2·h-1 in BF were significantly higher than those in PF in controlled sites (11.02±0.96) mg·m-2·h-1, and the rates in all the nitrogen addition sites increased compared with those in the controlled sites in both forests. Soil BTEX fluxes showed no significant correlation with soil temperature, air temperature or CO2 emission rates, but o-xylene and ethyl benzene fluxes showed significant correlation with soil water content.