Effects of Plant Growth Promoting Rhizobacteria on Plants Heavy Metal Uptake and Transport:A Review
Given that soil pollution heavy metals is a major threat to ecological environment and human well-being. The remediation of heavy metals polluted soils is a hot topic of global concern being vigorously studied these days. This paper presents a review of the current research of the plant growth promoting rhizobacteria (PGPR), which are known to play a particular vital role in rhizosphere heavy metals uptake and translocation of plants. The rhizosphere soil harbored a wide variety of microorganisms that are key factors dominating the rhizosphere environment. As known, the rhizosphere provides a complex and dynamic microenvironment where microorganism in metal contaminated soils, in association with the surroundings of plant roots and rhizosphere soil.The PGPG have been shown to possess several characteristics that can alter heavy metal bioavailability, through releasing of plant growth hormones, and thus accentuating heavy metals uptake in plants, eventually resulting in the improvement of phytoremediation efficiency for heavy metal contaminated soil. To date, there has been a boom in numbers of studies that focus on the reinforcement of phytoremediation efficiency involved in the heavy metals tolerant PGPR. Latest studies show that the PGPG could enhance agricultural yields with preventing the upward transport of metal ions to the above ground parts of plants or crops via several mechanism such as, accelerating the metal absorption onto cell rhizobacteria cell wall active and functional groups, inducing plant systemic resistance (ISR), triggering the antioxidant enzymes activity, secreting high affinity iron carrier termed Siderophores into rhizosphere, competitively inhibiting the heavy metal uptake by roots, and modifying the processes of absorption, transportation and intracellular distribution of metal ions. This review provides new progresses about the mechanisms possessed by PGPR that ameliorate heavy metal stress of plants and how the Cd accumulation reduced by the inoculants. Furthermore, the studies of PGPR highlight suit colonization, subcellular distribution and the molecular mechanism of heavy metal uptake and transportation will help to clarify the PGPR-plant interaction mechanism. The conclusion of this review highlight a new insight into the exploration of PGPR on heavy metal contaminated soil crops safety production and remediation.