Distribution of Soil Active Organic Carbon under Different Management Patterns of Poplar Plantation
Soil active organic carbon, an active fraction of soil organic matter, plays a significant role in maintaining the balance of soil organic carbon and soil fertility. It was easily affected by the microbial activity, the land use patterns and the tillage measures. Soil was collected from the two plots of poplar(Populus euramevicana) plantation under different management patterns (pure poplar stand: CP, farmland shelterbelt: NL) in Northern Jiangsu Area and the vertical distribution of active soil organic carbon were studied. The results showed that the contents of soil total organic carbon (TOC), labile oxidizable carbon (LOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) were all decreased with soil depth increase. The contents of soil TOC, LOC, POC and MBC at 30~40 cm depth, compared with those at 0~10 cm depth, were, respectively, decreased by 39.24%, 69.12%、60.28% and 49.91%. There exited a similar change trend of active organic carbon concentrations in different soil depths between NL1 and CP, and the concentrations of TOC, MBC, LOC and POC were all decreased with soil depths increase, however, for NL2 and NL3 sampling sites, The maximum of TOC, MBC, LOC and POC were occured at 20~30 cm soil depth. The results also indicated that, except the MBC, the contents of TOC, LOC and POC at 0~10 and 10~20 cm soil depth of CP were higher than those of NL. The values ofw(MBC)/w(TOC) andw(LOC)/w(TOC) at different soil depths of NL were correspondently higher than those of CP, but the values ofw(POC)/w(TOC) at differetn soil depths of CP were higher than those of NL. It was also indicated that there exited a significant positive correlation between soil active organic carbon and total organic carbon for all sampling sites except NL2 which was obviously influenced by human activities. It could be concluded that soil organic carbon was influenced by soil properties and human activities, and there was no clear change tendency between poplar plantations under different management patterns.
soil active oragnic carbonmanagement patternpoplar plantationvertical distribution