首页|基于改进BPNN的5G通信网络流量预测

基于改进BPNN的5G通信网络流量预测

扫码查看
为提高 5G网络流量预测结果的准确性,提出一种基于改进反向传播神经网络(Back Propagation Neural Network,BPNN)的 5G通信网络流量预测方法,采用阿基米德优化算法(Arithmetic Optimization Algorithm,AOA)优化BPNN的权系数和阈值,建立基于AOA-BPNN的 5G通信网络流量预测模型.采用某 5G基站的网络通信流量监测数据进行仿真分析,并与其他方法的预测效果进行对比,结果表明,AOA-BPNN模型预测结果的平均相对误差和均方根误差分别为4.25%和0.522 GB,预测精度高于其他方法,验证了所提方法的实用性和优越性.
Traffic Prediction of 5G Communication Network Based on Improved BPNN
In order to improve the accuracy of 5G network traffic prediction results,a 5G communication network traffic prediction method based on improved Back Propagation Neural Network(BPNN)is proposed.Arithmetic Optimization Algorithm(AOA)algorithm is used to optimize the weight coefficients and thresholds of BPNN,and a 5G communication network traffic prediction model based on AOA-BPNN is established.Simulation analysis is conducted using network communication traffic monitoring data from a certain 5G base station,and the prediction results are compared with other methods.The results show that the average relative error and root mean square error of the AOA-BPNN model proposed in this paper were 4.25%and 0.522 GB,the prediction accuracy is higher than other methods,verifying the practicality and superiority of the proposed method.

5G communicationnetwork traffic predictionBack Propagation Neural Network(BPNN)Arithmetic Optimization Algorithm(AOA)

李兵

展开 >

中海油信息科技有限公司湛江分公司,广东 湛江 524000

5G通信 网络流量预测 反向传播神经网络(BPNN) 阿基米德优化算法(AOA)

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(1)
  • 6