首页|基于模糊神经网络的电力通信信号异常检测研究

基于模糊神经网络的电力通信信号异常检测研究

扫码查看
由于现有的异常检测方法检测准确率低,无法有效检测出异常信号,因此提出一种基于模糊神经网络的电力通信信号异常检测方法.将采集的样本数据输入网络,通过无监督的学习和训练获得稳定的网络参数,学习并提取重要的特征信息.对已知的数据特征指标进行编码,运用解调的方式提取异常信号特征,并将其输入模糊神经网络.结合粒子群算法对网络进行训练,获得全局最优值.通过快速傅里叶变换(Fast Fourier Transform,FFT)将训练数据变成信号幅度,并判断信号是否异常,从而完成信号异常检测.实验结果表明,利用所提方法的10 个小组检测准确率均在99%以上,结果符合预期,异常检测效果良好.
Study on Anomaly Detection of Power Communication Signal Based on Fuzzy Neural Network
Because the existing anomaly detection methods have low detection accuracy and can not effectively detect abnormal signals,this paper proposes an anomaly detection method for electric power communication signals based on fuzzy neural network.The collected sample data are input into the network,and stable network parameters are obtained through unsupervised learning and training,and important feature information is learned and extracted.The known data characteristic indexes are coded,and the abnormal signal characteristics are extracted by demodulation,and input into the fuzzy neural network.Combined with particle swarm optimization,the network is trained to obtain the global optimal value.Fast Fourier Transform(FFT)is used to transform the training data into signal amplitude,and to judge whether the signal is abnormal,so as to complete the signal abnormality detection.The experimental results show that the accuracy of 10 groups using the proposed method is above 99%,and the results are in line with expectations,and the anomaly detection effect is good.

fuzzy neural networkelectric power communicationsignal abnormality detection

张楠、李涛涛

展开 >

陕西思极科技有限公司,陕西西安 710000

国网宝鸡供电公司,陕西宝鸡 721004

模糊神经网络 电力通信 信号异常检测

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(3)
  • 6