首页|电力系统继电保护设备故障诊断系统研究

电力系统继电保护设备故障诊断系统研究

扫码查看
针对电力系统继电保护设备故障诊断的高维、非线性特点及实时性要求,传统方法难以满足精准、快速诊断的需求.因此,文章提出了一个基于支持向量机(Support Vector Machine,SVM)的电力系统继电保护故障诊断系统.先利用高精度传感器实时采集电力系统的运行状态数据,然后预处理采集的数据,提取关键特征.经过预处理的数据被送入经过训练和优化的SVM模型进行故障分类与识别.结果表明,该系统在保障电力系统稳定运行方面具有显著效果,能够快速准确地诊断出电力系统中的各类故障,显著提高了故障处理的及时性和准确性.
Research on Fault Diagnosis System of Power System Relay Protection Equipment
With regard to the high-dimensional and nonlinear characteristics of power system fault diagnosis and real-time requirements,traditional methods are difficult to meet the demand for accurate and fast diagnosis.Hence,this paper proposes a power system relay protection fault diagnosis system based on Support Vector Machine(SVM).Firstly,high-precision sensors are utilized to collect real-time power system operation state data,and then the collected data are preprocessed to extract key features.The preprocessed data are fed into a trained and optimized SVM model for fault classification and identification.Experimental results show that the system has significant effects in ensuring the stable operation of the power system,can quickly and accurately diagnose various types of faults in the power system,and significantly improves the timeliness and accuracy of fault handling.

Support Vector Machine(SVM)power systemfault diagnosis

张雯

展开 >

济南鲁源电气集团有限公司,山东济南 250000

支持向量机(SVM) 电力系统 故障诊断

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(6)
  • 5