首页|基于混合神经网络的复杂通信网络节点拥塞控制方法

基于混合神经网络的复杂通信网络节点拥塞控制方法

扫码查看
常规的复杂通信网络节点拥塞控制方法以降低节点运行负荷为主,而拥塞控制功能增加了网络负载,从而影响网络通信效果.因此,设计基于混合神经网络的复杂通信网络节点拥塞控制方法.生成复杂通信网络节点虚拟队列,数据包到达时,在虚拟队列空闲的缓冲空间中排队等候,避免网络节点拥塞问题,并基于混合神经网络部署通信网络节点拥塞控制结构,以均衡网络资源为出发点,划分网络节点等效感知半径的覆盖区域,从而达到节点拥塞控制的目的.采用对比实验,验证该方法的拥塞控制效果更佳,能够应用于实际生活.
A Congestion Control Method for Complex Communication Network Nodes Based on Hybrid Neural Networks
Conventional node congestion control methods for complex communication networks are based on reducing the node operating load,and the congestion control function increases the network load,thus affecting the network communication effect.Therefore,the design of complex communication network node congestion control method based on hybrid neural network.Generate a virtual queue of complex communication network nodes,and queue up in the free buffer space of the virtual queue when the packet arrives to avoid the network node congestion problem,and deploy the communication network node congestion control structure based on hybrid neural network to equalize the network resources as a starting point,and divide the coverage area of the network nodes'equivalent perceptual radius,so as to achieve the purpose of node congestion control.Comparison experiments are used to verify that the method has a better congestion control effect and can be applied in real life.

hybrid neural networkcomplex communication networksnode congestion

李文佳

展开 >

中国民用航空华北地区空中交通管理局,北京 100621

混合神经网络 复杂通信网络 节点拥塞

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(7)
  • 5