首页|基于深度学习的信息通信网络工程中的智能数据传输系统设计

基于深度学习的信息通信网络工程中的智能数据传输系统设计

扫码查看
文章针对现代通信网络中日益增长的数据流量和网络复杂性,提出一种基于深度学习的智能数据传输系统设计方案.该系统利用深度神经网络对网络环境和数据流量特征进行建模与分析,实现自适应的传输优化、智能路由选择、主动安全防护以及快速故障恢复.通过构建基于长短期记忆(Long Short-Term Memory,LSTM)的流量预测模型、深度强化学习路由选择算法、基于自编码器的入侵检测模型等,系统能优化传输路径、调整传输参数、采取安全防护措施.实验结果显示,与传统方法相比,该智能系统提高了吞吐量、降低了时延、减少了丢包率,并加快了故障恢复速度.
Design of Intelligent Data Transmission System in Information Communication Network Engineering Based on Deep Learning
Aiming at the increasing data traffic and network complexity in modern communication networks,this paper proposes a design scheme of intelligent data transmission system based on deep learning.The system uses deep neural network to model and analyze the network environment and data flow characteristics,and realizes adaptive transmission optimization,intelligent routing,active security protection and rapid fault recovery.By constructing a traffic prediction model based on Long Short-Term Memory(LSTM),a routing algorithm based on deep reinforcement learning,an intrusion detection model based on self-encoder,etc.,the system can optimize transmission paths,adjust transmission parameters,and take security protection measures.Experimental results show that,compared with traditional methods,the intelligent system improves throughput,reduces delay,reduces packet loss rate and speeds up fault recovery.

deep learningintelligent data transmissionnetwork optimization

张光胜

展开 >

广东长实通信科技有限公司,广东 清远 511500

深度学习 智能数据传输 网络优化

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(8)
  • 5