首页|基于深度学习算法的继电保护系统设计

基于深度学习算法的继电保护系统设计

扫码查看
文章设计了一种集成卷积神经网络(Convolutional Neural Networks,CNN)与长短期记忆网络(Long Short-Term Memory,LSTM)的新型继电保护系统.通过智能传感器实时获取电力系统运行参数,并利用深度学习算法自动提取故障特征.通过仿真实验验证系统在故障检测、识别、定位方面的性能.该系统的平均故障检测时间控制在 20 ms以内,故障识别准确率达到 99.6%,故障定位误差控制在 1%以内,能够快速且准确地完成故障检测与诊断.研究成果不仅展现了深度学习在继电保护领域的应用潜力,而且为智能电网的发展提供了新思路.
Design of the Relay Protection System Based on the Deep Learning Algorithm
In this paper,a new relay protection system integrating Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM)is designed.The operation parameters of power system are obtained in real time by intelligent sensors,and the fault features are automatically extracted by deep learning algorithm.The performance of the system in fault detection,identification and location is verified by simulation experiments.The average fault detection time of the system is controlled within 20 ms,the accuracy of fault identification is 99.6%,and the error of fault location is controlled within 1%,which can quickly and accurately complete fault detection and diagnosis.The research results not only show the application potential of deep learning in the field of relay protection,but also provide new ideas for the development of smart grid.

relay protectiondeep learningConvolutional Neural Network(CNN)Long Short-Term Memory(LSTM)

樊新启、李元开

展开 >

深圳供电局有限公司,广东 深圳 518000

继电保护 深度学习 卷积神经网络(CNN) 长短期记忆网络(LSTM)

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(9)
  • 5