首页|面向网络入侵的人工智能检测方法

面向网络入侵的人工智能检测方法

扫码查看
随着互联网的迅速发展,网络安全问题日益突出.为此,文章提出一种基于小波变换和长短期记忆网络(Long Short-Term Memory,LSTM)的网络入侵检测方法.分析网络入侵检测问题,并提出基于人工智能的入侵检测系统功能框架.采用小波变换技术提取网络流量的时序特征,并将其作为LSTM的输入,实现对网络入侵行为的识别和检测.在NSL-KDD数据集上进行实验验证,结果表明该方法具有较高的准确率、召回率及精确率,凸显了其在网络安全领域的有效性和可行性.
Artificial Intelligence Detection Method for Network Intrusion
With the rapid development of the Internet,the problem of network security has become increasingly prominent.Therefore,this paper proposes a network intrusion detection method based on wavelet transform and Long Short-Term Memory(LSTM).The problem of network intrusion detection is analyzed,and the functional framework of intrusion detection system based on artificial intelligence is proposed.Wavelet transform technology is used to extract the time series characteristics of network traffic,and it is used as the input of LSTM to realize the identification and detection of network intrusion behavior.The experimental results on NSL-KDD data set show that this method has high accuracy,recall and precision,which highlights its effectiveness and feasibility in the field of network security.

artificial intelligencenetwork trafficintrusion detectionLong Short-Term Memory(LSTM)

张言言

展开 >

郑州工业应用技术学院信息工程学院,河南新郑 451100

人工智能 网络流量 入侵检测 长短期记忆网络(LSTM)

郑州工业应用技术学院校级项目(2023)郑州工业应用技术学院教育教学改革研究与实践项目(2023)

2023YB037JG-230103

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(10)
  • 9