首页|基于机器学习的网络流量分析与通信性能优化

基于机器学习的网络流量分析与通信性能优化

扫码查看
文章提出一种基于机器学习的网络流量分析与通信性能优化方法,旨在提升网络管理的安全性和效率.通过设计有效的特征提取方法,将网络流量数据转化为可处理的特征矩阵,并进行数据预处理和标签设置,以构建具有代表性和均衡性的数据集.采用卷积神经网络模型进行协议识别,并通过模型训练和参数调优技术优化通信性能.该方法在网络流量分析中具有有效性和应用潜力,为提升网络安全防御能力和通信性能提供了新的思路和方法.
Network Traffic Analysis and Communication Performance Optimization Based on Machine Learning
This paper proposes a method of network traffic analysis and communication performance optimization based on machine learning,aiming at improving the security and efficiency of network management.By designing an effective feature extraction method,the network traffic data is transformed into a processable feature matrix,and data preprocessing and label setting are carried out to construct a representative and balanced data set.Convolutional neural network model is used for protocol identification,and communication performance is optimized through model training and parameter tuning technology.This method has effectiveness and application potential in network traffic analysis,and provides new ideas and methods for improving network security defense capability and communication performance.

machine learningnetwork traffic analysisprotocol identificationfeature extraction

王陈希

展开 >

武警第一机动总队综合信息保障中心信息运维室,河北石家庄 050800

机器学习 网络流量分析 协议识别 特征提取

2024

通信电源技术
武汉普天通信设备集团有限公司

通信电源技术

影响因子:0.389
ISSN:1009-3664
年,卷(期):2024.41(13)